A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas
Abstract
:1. Introduction
- We investigate wearable antenna design, materials, and structural adaptability to ensure compatibility with WBANs and real-time applications.
- We evaluate the impact of bending, deformation, and proximity to human tissues on critical antenna parameters, such as gain, return loss, bandwidth, and the SAR.
- We analyze the role of flexible materials like textiles, polymers, and conductive composites in improving antenna functionality while exploring fabrication methods like inkjet printing and screen printing for scalable production.
- We examine techniques such as metamaterials, EBG structures, and FSSs to reduce SAR levels while maintaining antenna efficiency and safety.
- We explore the potential applications of wearable antennas in healthcare, the IoT, and next-generation communication systems, emphasizing their role in enhancing real-time monitoring and wireless communication.
2. Types of Flexible Wearable Antennas
2.1. Textile Antennas
2.2. Polymer-Based Antennas
2.3. Microwave Imaging Antennas
2.4. Patch Antennas
2.5. Monopole Antennas
3. Selection of Materials for Wearable Antennas
3.1. Flexible Conductive Material for Wearable Antennas
3.2. Flexible Substrate Material for Wearable Antennas
4. Bending Effect on Wearable Antennas
4.1. Primary Planes
4.2. Distinct Effects on the E- and H-Planes
5. Various Fabricating Methods for Flexible Antennas
- Screen printing;
- Inkjet printing;
- Sewing/stitching and embroidery processes.
5.1. Screen Printing
5.2. Inkjet Printing
5.3. Stitching, Sewing, and Embroidery
6. SAR for Antennas on Human Body
- Most antennas are placed near the skin and the SAR rises near the source because tissues absorb energy. High-performance, low-SAR antennas are crucial. A better antenna dissipates body energy.
- Antenna design greatly affects the SAR. And, it varies by antenna size, shape, and frequency. Higher-frequency antennas increase the SAR because the body absorbs more radiation. For antenna efficiency and the SAR, designers must optimize location, ground planes, and materials. The international SAR monitors wearable antenna safety. Architects must consider regional codes and SAR-certified flat, bending, and twisting antennas.
- Flexible antennas are susceptible to environmental conditions such as heat, humidity, and perspiration, which can degrade their performance and influence SAR levels. Design strategies and robust testing protocols are necessary to ensure consistent SAR compliance under varying conditions of use.
- The complex geometries and mobility of wearable antennas present significant challenges for SAR prediction and testing. Accurate SAR evaluation requires sophisticated algorithms and realistic human body models to simulate the interaction between antennas and biological tissues effectively.
6.1. Different Techniques to Reduce SAR Value
6.1.1. Reduction Using Electromagnetic Band Gap (EBG)
6.1.2. SAR Reduction Using Metamaterials
6.1.3. Reduction in Using Conductive Materials
6.1.4. Reduction Using Frequency Selective Surfaces (FSSs)
7. Applications for Flexible Wearable Antennas
8. Discussion and Future Scope
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Misra, G.; Agarwal, A.; Agarwal, K. Design and Performance Evaluation of Microstrip Antenna for Ultra-Wideband Applications Using Microstrip Feed. Am. J. Electr. Electron. Eng. 2015, 3, 93–99. [Google Scholar] [CrossRef]
- Hashim, F.F.; Mahadi, W.N.L.B.; Abdul Latef, T.B.; Othman, M. Bin Key Factors in the Implementation of Wearable Antennas for WBNs and ISM Applications: A Review WBNs and ISM Applications: A Review. Electronics 2022, 11, 5270. [Google Scholar] [CrossRef]
- Alhayajneh, A.; Baccarini, A.N.; Weiss, G.M.; Hayajneh, T.; Farajidavar, A. Biometric authentication and verification for medical cyber physical systems. Electronics 2018, 7, 436. [Google Scholar] [CrossRef]
- Abbasi, Q.H.; Rehman, M.U.; Qaraqe, K.; Alomainy, A. Advances in Body-Centric Wireless Communication: Applications and State-of-the-Art; Institution of Engineering and Technology: Stevenage, UK, 2016; ISBN 1849199892. [Google Scholar]
- Negra, R.; Jemili, I.; Belghith, A. Wireless body area networks: Applications and technologies. Procedia Comput. Sci. 2016, 83, 1274–1281. [Google Scholar] [CrossRef]
- Hadjidj, A.; Souil, M.; Bouabdallah, A.; Challal, Y.; Owen, H. Wireless sensor networks for rehabilitation applications: Challenges and opportunities. J. Netw. Comput. Appl. 2013, 36, 1–15. [Google Scholar] [CrossRef]
- WHO Ageing and Health Fact Sheet. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 7 November 2024).
- Salehi, S.A.; Razzaque, M.A.; Tomeo-Reyes, I.; Hussain, N. IEEE 802.15.6 standard in wireless body area networks from a healthcare point of view. In Proceedings of the 2016 22nd Asia-Pacific Conference on Communications (APCC), Yogyakarta, Indonesia, 25–27 August 2016; pp. 523–528. [Google Scholar] [CrossRef]
- Wireless Body Area Network-IEEE 802.15.6 WBAN Basics. Available online: https://www.rfwireless-world.com/Tutorials/WBAN-IEEE-802-15-6-tutorial.html (accessed on 3 November 2024).
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Klemm, M.; Troester, G. Textile UWB Antennas for Wireless Body Area Networks. IEEE Trans. Antennas Propag. 2006, 54, 3192–3197. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending analysis of polymer-based flexible antennas for wearable, general iot applications: A review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Varma, D.R.; Murali, M.; Krishna, M.V.; Raju, G.S.N. Miniaturized Novel Textile Antenna for Biomedical Applications. In Proceedings of the 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, 5–6 April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Jayabharathy, K.; Shanmuganantham, T. Design of a Compact Textile Wideband Antenna for Smart Clothing. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; pp. 477–481. [Google Scholar] [CrossRef]
- Turkmen, M.; Yalduz, H. Design and Performance Analysis of a Flexible UWB Wearable Textile Antenna on Jeans Substrate. Int. J. Inf. Electron. Eng. 2018, 8, 15–18. [Google Scholar] [CrossRef]
- Isa, M.S.M.; Azmi, A.N.L.; Isa, A.A.M.; Zin, M.S.I.M.; Saat, S.; Zakaria, Z.; Ibrahim, I.M.; Abu, M.; Ahmad, A. Textile dual band circular ring patch antenna under bending condition. J. Telecommun. Electron. Comput. Eng. 2017, 9, 37–43. [Google Scholar]
- Mersani, A.; Bouamara, W.; Osman, L.; Ribero, J.M. Dielectric resonator antenna button textile antenna for off-body applications. Microw. Opt. Technol. Lett. 2020, 62, 2910–2918. [Google Scholar] [CrossRef]
- Marterer, V.; Radouchová, M.; Soukup, R.; Hipp, S.; Blecha, T. Wearable textile antennas: Investigation on material variants, fabrication methods, design and application. Fash. Text. 2024, 11, 9. [Google Scholar] [CrossRef]
- Abdulla, F.A.A.; Demirkol, A. A novel textile-based UWB patch antenna for breast cancer imaging. Phys. Eng. Sci. Med. 2024, 47, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.F.; Dzabletey, P.A.; Kim, H.; Chung, J.Y. An all-textile dual-band antenna for ble and lora wireless communications. Electronics 2021, 10, 2967. [Google Scholar] [CrossRef]
- Parameswari, S.; Chitra, C. Textile UWB antenna with metamaterial for healthcare monitoring. Int. J. Antennas Propag. 2021, 2021, 5855626. [Google Scholar] [CrossRef]
- Kareem, F.R.; El Atrash, M.; Ibrahim, A.A.; Abdalla, M.A. Dual-band all textile antenna with AMC for heartbeat monitor and pacemaker control applications. Int. J. Microw. Wirel. Technol. 2022, 14, 1206–1221. [Google Scholar] [CrossRef]
- Leterrier, Y. Mechanics of curvature and strain in flexible organic electronic devices. In Handbook of Flexible Organic Electronics: Materials, Manufacturing and Applications; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9781782420439. [Google Scholar]
- Venkatachalam, D.; Jagadeesan, V.; Batcha, K.; Ismail, M. Compact Flexible Planar Antennas for Biomedical Applications: Insight into Materials and Systems Design. Bioengineering 2023, 10, 1137. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.L.; Chee, P.S.; Lim, E.H. Compact conformal tattoo-polymer antenna for on-body wireless power transfer. Sci. Rep. 2023, 13, 9678. [Google Scholar] [CrossRef]
- Sakulchat, S.; Ruengwaree, A.; Thongpool, V.; Naktong, W. Low-Cost Flexible Graphite Monopole Patch Antenna for Wireless Communication Applications. Comput. Mater. Contin. 2022, 71, 6069–6088. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Y.; Gong, Z.; Seet, B.C.; Huang, L.; Lu, Y. Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications. IEEE Trans. Antennas Propag. 2020, 68, 4238–4249. [Google Scholar] [CrossRef]
- Shailesh; Srivastava, G. Antennas for Biomedical Applications. In Bioelectronics and Medical Devices, 1st ed.; Apple Academic Press: Burlington, ON, Canada, 2021; pp. 19–55. [Google Scholar] [CrossRef]
- Khalesi, B.; Khalid, B.; Ghavami, N. Microwave Imaging for Lung COVID-19 Infection Detection through Huygens Principle. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 2885–2891. [Google Scholar] [CrossRef]
- Fiser, O.; Hruby, V.; Vrba, J.; Member, L.; Drizdal, T.; Tesarik, J.; Vrba, J.; Vrba, D. UWB Bowtie Antenna for Medical Microwave Imaging Applications. IEEE Trans. Antennas Propag. 2022, 70, 5357–5372. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Sharma, S.; Tipathy, M.R. U Slotted Wide Band Wearable Patch Antenna for WBAN Applications. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 7–9 October 2020; pp. 252–257. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Li, Z.; An, Q.; Hou, K.; Wang, J. The Vivaldi Antenna Design for Ultra-Wideband Biomedical Breast Imaging. In Proceedings of the 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 309–312. [Google Scholar]
- Khalesi, B.; Khalid, B.; Ghavami, N.; Raspa, G.; Ghavami, M.; Dudley-Mcevoy, S.; Tiberi, G. A Microwave Imaging Procedure for Lung Lesion Detection: Preliminary Results on Multilayer Phantoms. Electronic 2022, 11, 2105. [Google Scholar] [CrossRef]
- Hu, Z.; Su, T.; Xu, D.; Pang, G.; Gini, F. A Fast Fourier-Based Near-Field 3-D Imaging Algorithm for MIMO Array. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5219114. [Google Scholar] [CrossRef]
- Geetharamani, G.; Aathmanesan, T. Metamaterial inspired THz antenna for breast cancer detection. SN Appl. Sci. 2019, 1, 1–9. [Google Scholar] [CrossRef]
- Shekhawat, S.; Singh, S.; Kumar Singh, S. A review on bending analysis of polymer-based flexible patch antenna for IoT and wireless applications. Mater. Today Proc. 2022, 66, 3511–3516. [Google Scholar] [CrossRef]
- Baruah, R.K.; Yoo, H. Interconnection Technologies for Flexible Electronics: Materials, Fabrications, and Applications. Micromachines 2023, 14, 1131. [Google Scholar] [CrossRef] [PubMed]
- Azeez, H.I.; Yang, H.C.; Chen, W.S. Wearable triband E-shaped dipole antenna with low SAR for IoT applications. Electronics 2019, 8, 665. [Google Scholar] [CrossRef]
- Nisha, M.; Sai Shweta, S.; Selvi, G.T.; Bose, A.M. Wearable textile patch antenna: With co-planar waveguide (CPW) feed for medical applications. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 67–70. [Google Scholar]
- Zvolensky, T.; Gowda, V.R.; Gollub, J.; Marks, D.L.; Smith, D.R. W-band sparse imaging system using frequency diverse cavity-fed metasurface antennas. IEEE Access 2018, 6, 73659–73668. [Google Scholar] [CrossRef]
- El Gharbi, M.; Fernández-García, R.; Gil, I. Embroidered wearable Antenna-based sensor for Real-Time breath monitoring. Meas. J. Int. Meas. Confed. 2022, 195, 111080. [Google Scholar] [CrossRef]
- Musa, U.; Shah, S.M.; Majid, H.A.; Mahadi, I.A.; Rahim, M.K.A.; Yahya, M.S.; Abidin, Z.Z. Design and analysis of a compact dual-band wearable antenna for WBAN applications. IEEE Access 2023, 11, 30996–31009. [Google Scholar] [CrossRef]
- Islam, J.; Rahman, M.; Touhidul Islam, A.Z.M. Design of a Polyester Substrate based Microstrip Patch Antenna for WBAN Applications. Int. J. Recent Eng. Sci. 2023, 10, 77–83. [Google Scholar] [CrossRef]
- Rathod, K.; Raskar, S.; Gamit, S.; Deshpande, S. Design of Hexagonal Ring Wearable Textile Antenna using Polyester for Early Bone Health Detection. Procedia Comput. Sci. 2023, 230, 946–954. [Google Scholar] [CrossRef]
- Alsaraira, A.; Saraereh, O.A.; Ali, A.; Alabed, S. Design of LoRa Antenna for Wearable Medical Applications. IEEE Access 2023, 11, 23886–23895. [Google Scholar] [CrossRef]
- Sivabalan, A.; Jothilakshmi, P. Micro strip wearable O-shaped reconfigurable antenna for medical applications. Int. J. Recent Technol. Eng. 2019, 8, 318–324. [Google Scholar]
- Harris, H.A.; Anwar, R.; Wahyu, Y.; Sulaiman, M.I.; Mansor, Z.; Nurmantris, D.A. Design and Implementation of Wearable Antenna Textile for ISM Band. Prog. Electromagn. Res. C 2022, 120, 11–26. [Google Scholar] [CrossRef]
- Kirtania, S.G.; Elger, A.W.; Hasan, R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible Antennas: A Review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Wagih, M.; Wei, Y.; Beeby, S. Flexible 2.4 GHz Node for Body Area Networks with a Compact High-Gain Planar Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 49–53. [Google Scholar] [CrossRef]
- Hamouda, Z.; Wojkiewicz, J.L.; Pud, A.A.; Kone, L.; Belaabed, B.; Bergheul, S.; Lasri, T. Dual-band elliptical planar conductive polymer antenna printed on a flexible substrate. IEEE Trans. Antennas Propag. 2015, 63, 5864–5867. [Google Scholar] [CrossRef]
- Kavitha, V.; Malaisamy, K.; Murugesh, T.S.; SenthilKumar, M. Design and development of jeans textile antenna for wireless broadband applications. J. Ind. Text. 2023, 53, 1–13. [Google Scholar] [CrossRef]
- Abolade, J.O.; Konditi, D.B.O.; Dharmadhikary, V.M. Comparative study of textile material characterization techniques for wearable antennas. Results Mater. 2021, 9, 100168. [Google Scholar] [CrossRef]
- Leśnikowski, J. Influence of selected parameters of the substrate of a microstrip textile antenna on changes in its resonance frequency under the influence of humidity. J. Text. Inst. 2024, 1–8. [Google Scholar] [CrossRef]
- Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809. [Google Scholar] [CrossRef]
- Mishra, R.; Kuchhal, P.; Kapoor, A. Compact Multi-slotted Printed Antenna for Ultra-Wideband Applications in Medical Telemetry. IETE J. Res. 2023, 69, 8580–8587. [Google Scholar] [CrossRef]
- Paracha, K.N.; Kamal, S.; Rahim, A.; Soh, P.J.; Khalily, M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Sharma, A. Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review). Radioelectron. Commun. Syst. 2021, 64, 337–350. [Google Scholar] [CrossRef]
- Ali, U.; Ullah, S.; Shafi, M.; Shah, S.A.A.; Shah, I.A.; Flint, J.A. Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2567. [Google Scholar] [CrossRef]
- Thielens, A.; Deckman, I.; Aminzadeh, R.; Arias, A.C.; Rabaey, J.M. Fabrication and Characterization of Flexible Spray-Coated Antennas. IEEE Access 2018, 6, 62050–62061. [Google Scholar] [CrossRef]
- Singh, N.; Singh, A.K.; Singh, V.K. Design & performance of wearable ultra wide band textile antenna for medical applications. Open Eng. 2015, 5, 117–123. [Google Scholar] [CrossRef]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J.Y.C. Embroidery and related manufacturing techniques for wearable antennas: Challenges and opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef]
- Potey, P.M.; Tuckley, K. Design of wearable textile antenna with various substrate and investigation on fabric selection. In Proceedings of the 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 9–11 February 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Zhu, S.; Langley, R. Dual-band wearable textile antenna on an EBG substrate. IEEE Trans. Antennas Propag. 2009, 57, 926–935. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Shah, S.M.; Majid, H.A.; Khee, Y.S.; Malek, N.A. A wearable antenna based on fabric materials with circular polarization for body-centric wireless communications. Indones. J. Electr. Eng. Comput. Sci. 2019, 18, 335–342. [Google Scholar] [CrossRef]
- Lonsky, T.; Hazdra, P. Design of a plexiglass rod antenna. In Proceedings of the 2017 Conference on Microwave Techniques (COMITE), Brno, Czech Republic, 20–21 April 2017. [Google Scholar] [CrossRef]
- Ali, U.; Ullah, S.; Khan, J.; Shafi, M.; Kamal, B.; Basir, A.; Flint, J.A.; Seager, R.D. Design and SAR analysis of wearable antenna on various parts of human body, using conventional and artificial ground planes. J. Electr. Eng. Technol. 2017, 12, 317–328. [Google Scholar] [CrossRef]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef] [PubMed]
- Ashyap, A.Y.I.; Zainal Abidin, Z.; Dahlan, S.H.; Majid, H.A.; Saleh, G. Metamaterial inspired fabric antenna for wearable applications. Int. J. RF Microw. Comput. Eng. 2019, 29, e21640. [Google Scholar] [CrossRef]
- Fat, J.; Alam, S.; Surjati, I. Performance analysis at the off body environment in terms of impedance matching, return loss and VSWR for wearable antenna system on different materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 508, 3–8. [Google Scholar] [CrossRef]
- Shah, S.M.; Kadir, N.F.A.; Abidin, Z.Z.; Seman, F.C.; Hamzah, S.A.; Katiran, N. A 2.45 GHz semi-flexible wearable antenna for industrial, scientific and medical band applications. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 814–822. [Google Scholar] [CrossRef]
- Panda, S.; Gupta, A.; Acharya, B. Wearable microstrip patch antennas with different flexible substrates for health monitoring system. Mater. Today Proc. 2019, 45, 4002–4007. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Zainal Abidin, Z.; Dahlan, S.H.; Majid, H.A.; Waddah, A.M.A.; Kamarudin, M.R.; Oguntala, G.A.; Abd-Alhameed, R.A.; Noras, J.M. Inverted e-shaped wearable textile antenna for medical applications. IEEE Access 2018, 6, 35214–35222. [Google Scholar] [CrossRef]
- Dey, A.B.; Pattanayak, S.S.; Mitra, D.; Arif, W. Investigation and design of enhanced decoupled UWB MIMO antenna for wearable applications. Microw. Opt. Technol. Lett. 2021, 63, 845–861. [Google Scholar] [CrossRef]
- Ramli, N.; Noor, S.K.; Zaini, H. Design and Analysis of Textile Wearable Antenna Using 100% Cotton at 2.4 GHz for Wireless Applications. In Proceedings of the International Conference on Communication, Electrical and Computer Networks (ICCECN 2020), Honolulu, HI, USA, 3–6 August 2020; Volume 1. [Google Scholar] [CrossRef]
- Zaidi, N.I.; Abd Rahman, N.H.; Yahya, M.F.; Nordin, M.S.A.; Subahir, S.; Yamada, Y.; Majumdar, A. Analysis on Bending Performance of the Electro-Textile Antennas with Bandwidth Enhancement for Wearable Tracking Application. IEEE Access 2022, 10, 31800–31820. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Z.; Wu, J.; Bao, J.; Liu, J.; Cai, L.; Dang, T.; Zheng, H.; Li, E. Investigation of SAR Reduction Using Flexible Antenna With Metamaterial Structure in Wireless Body Area Network. IEEE Trans. Antennas Propag. 2018, 66, 3076–3086. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S.; Samdaria, A.; Gurion, D.B.; Balamurugan, K. Realization and Analysis of a Novel Low-Profile Embroidered Textile Antenna for Real-time Pulse Monitoring. IETE J. Res. 2022, 68, 4142–4149. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S. Design and experimental evaluation of a novel on-body textile antenna for unicast applications. Microw. Opt. Technol. Lett. 2020, 62, 789–799. [Google Scholar] [CrossRef]
- Mahfuz, M.M.H.; Islam, M.R.; Sakib, N.; Habaebi, M.H.; Raad, R.; Tayab Sakib, M.A. Design of Wearable Textile Patch Antenna Using C-Shape Etching Slot for Wi-MAX and 5G Lower Band Applications. In Proceedings of the 2021 8th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 22–23 June 2021; pp. 168–172. [Google Scholar] [CrossRef]
- Roshni, S.B.; Jayakrishnan, M.P.; Mohanan, P.; Surendran, K.P. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater. Struct. 2017, 26, 105011. [Google Scholar] [CrossRef]
- Ali, S.M.; Sovuthy, C.; Imran, M.A.; Socheatra, S.; Abbasi, Q.H.; Abidin, Z.Z. Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: State-of-the-art. Micromachines 2020, 11, 888. [Google Scholar] [CrossRef]
- Khan, A.; Haque, M.N.; Kabiraz, D.C.; Yeasin, A.; Rashid, H.A.; Sarker, A.C.; Hossain, G. A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Sens. Actuators A Phys. 2023, 350, 114093. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, P.J.; Malek, F.; Ahmad, S.; Hashim, N.B.M.; Hall, P.S. A review of wearable antenna. In Proceedings of the Loughborough Antennas and Propagation Conference, LAPC 2009—Conference Proceedings, Loughborough, UK, 16–17 November 2009; pp. 225–228. [Google Scholar]
- Ashyap, A.Y.I.; Dahlan, S.H.B.; Abidin, Z.Z.; Rahim, S.K.A.; Majid, H.A.; Alqadami, A.S.M.; Atrash, M. El Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications. IEEE Access 2021, 9, 6948–6960. [Google Scholar] [CrossRef]
- Raj, T.; Mishra, R.; Kapoor, A.; Bhunia, S.; Kundu, S. Development and analysis of small Multi Input Multi Output antenna with better isolation for Frequency Range-2 5th Generation band applications. Int. J. Commun. Syst. 2024, 37, e5897. [Google Scholar] [CrossRef]
- Rafiq, M.; Imran, A.; Rasheed, A.; Zaman, S.U. A review on the manufacturing techniques for textile based antennas. J. Eng. Fiber. Fabr. 2024, 19, 1–18. [Google Scholar] [CrossRef]
- Faruque, M.R.I.; Islam, M.T.; Ullah, M.H. Biological effect of SAR on the human head due to variation of dielectric properties at 1800 and 2450 MHz with different antenna substrate materials. Sci. Eng. Compos. Mater. 2015, 22, 411–415. [Google Scholar] [CrossRef]
- Zhou, L.; Fang, S.; Jia, X. Dual-band and dual-polarised circular patch textile antenna for on-/off-body WBAN applications. IET Microw. Antennas Propag. 2020, 14, 643–648. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Maity, S.; Chaudhuri, S.R.B.; Mitra, M. A compact dual-band dual-polarized omnidirectional antenna for on-body applications. IEEE Trans. Antennas Propag. 2019, 67, 5044–5053. [Google Scholar] [CrossRef]
- Gao, G.; Hu, B.; Wang, S.; Yang, C. Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate. Microw. Opt. Technol. Lett. 2018, 60, 876–882. [Google Scholar] [CrossRef]
- Ferreira, D.; Pires, P.; Rodrigues, R.; Caldeirinha, R.F.S. Wearable textile antennas: Examining the effect of bending on their performance. IEEE Antennas Propag. Mag. 2017, 59, 54–59. [Google Scholar] [CrossRef]
- Kavitha, A.; Swaminathan, J.N. Design of flexible textile antenna using FR4, jeans cotton and teflon substrates. Microsyst. Technol. 2019, 25, 1311–1320. [Google Scholar] [CrossRef]
- Mazen, K.; Emran, A.; Shalaby, A.S.; Yahya, A. Design of Multi-band Microstrip Patch Antennas for Mid-band 5G Wireless Communication. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 459–469. [Google Scholar] [CrossRef]
- Turgut, A. Analyzing the SAR in Human Head Tissues under Different Exposure Scenarios. Appl. Sci. 2023, 13, 6971. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, V.K.; Bhoi, A.K.; Marques, G. Wireless Body Area Networks: UWB Wearable Textile Antenna for Telemedicine and Mobile Health Systems. Micromachines 2020, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Seman, F.C. A compact wearable antenna using EBG for smart-watch applications. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1477–1479. [Google Scholar] [CrossRef]
- Messaoudi, H.; Aguili, T. SAR Reduction in the Human Head Model using Metamaterials. In Proceedings of the 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), Hammamet, Tunisia, 31 October–2 November 2019. [Google Scholar] [CrossRef]
- Raj, P.; Dwivedi, R.P. Sar reduction techniques for wearable. arXiv 2023, arXiv:2304.07804. [Google Scholar]
- Yadav, A.; Singh, V.K.; Yadav, P.; Beliya, A.K.; Bhoi, A.K.; Barsocchi, P. Design of circularly polarized triple-band wearable textile antenna with safe low sar for human health. Electronics 2020, 9, 1366. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Masood, A.; Nizam-Uddin, N.; Alnakhli, M. A Simulation Study of Triband Low SAR Wearable Antenna. Micromachines 2023, 14, 819. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.I.; Sim, D.U.; Kwon, J.H.; Yoon, Y.J. Design of PIFA with Metamaterials for Body-SAR Reduction in Wearable Applications. IEEE Trans. Electromagn. Compat. 2017, 59, 297–300. [Google Scholar] [CrossRef]
- Kapoor, A.; Mishra, R.; Kumar, P. Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications. Alex. Eng. J. 2022, 61, 4263–4293. [Google Scholar] [CrossRef]
- Al-Sehemi, A.G.; Al-Ghamdi, A.A.; Dishovsky, N.T.; Atanasov, N.T.; Atanasova, G.L. Flexible and small wearable antenna for wireless body area network applications. J. Electromagn. Waves Appl. 2017, 31, 1063–1082. [Google Scholar] [CrossRef]
- Kamatchi, M.A.; Keralshalini, V.; Berlin, A.; Engineering, C.; Kumarasamy, M.; Nadu, T.; Engineering, C.; Kumarasamy, M.; Nadu, T.; Engineering, C.; et al. Body Worn Antenna for Telemedicine Applications. Int. J. Emerg. Trends Sci. Technol. 2017, 3, 2–5. [Google Scholar]
- Ashyap, A.Y.I.; Zainal Abidin, Z.; Dahlan, S.H.; Majid, H.A.; Kamarudin, M.R.; Alomainy, A.; Abd-Alhameed, R.A.; Kosha, J.S.; Noras, J.M. Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications. IEEE Access 2018, 6, 77529–77541. [Google Scholar] [CrossRef]
- Sugumaran, B.; Balasubramanian, R.; Palaniswamy, S.K. Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications. Eng. Sci. Technol. Int. J. 2021, 24, 682–693. [Google Scholar] [CrossRef]
- Saha, P.; Mitra, D.; Parui, S.K. Control of Gain and SAR for Wearable Antenna Using AMC Structure. Radioengineering 2021, 30, 81–88. [Google Scholar] [CrossRef]
- Saeed, S.M.; Member, S.; Balanis, C.A.; Fellow, L.; Birtcher, C.R.; Durgun, A.C.; Shaman, H.N. Integrated With Artificial Magnetic Conductor. IEEE Antennas Wirel. Propag. Lett. 2017, 1225, 1–4. [Google Scholar]
- Ashap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Yee, S.K.; Saleh, G.; Malek, N.A. Flexible wearable antenna on electromagnetic band gap using PDMS substrate. Telkomnika Telecommun. Comput. Electron. Control. 2017, 15, 1454–1460. [Google Scholar] [CrossRef]
- Agarwal, K.; Guo, Y.X.; Salam, B.; Albert, L.C.W. Latex based near-endfire wearable antenna backed by AMC surface. In Proceedings of the 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Singapore, 9–11 December 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, H.; Yao, W.; Yi, Y.; Huang, X.; Wu, S.; Xiao, B. A dual-band low-profile metasurface-enabled wearable antenna for WLAN Devices. Prog. Electromagn. Res. C 2016, 61, 115–125. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Kamarudin, M.R.; Abd-Alhameed, R.A. Robust low-profile electromagnetic band-gap-based on textile wearable antennas for medical application. In Proceedings of the 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), Athens, Greece, 1–3 March 2017; pp. 158–161. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.M. Low specific absorption rate wearable antenna for WLAN band applications. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Ahmed, M.I.; Abdallah, E.A.; Elhennawy, H.M. SAR Investigation of Novel Wearable Reduced- Coupling Microstrip Antenna Array. Int. J. Eng. Technol. IJET-IJENS 2015, 15, 78–86. [Google Scholar]
- El Atrash, M.; Abdalla, M.A.; Elhennawy, H.M. A Wearable Dual-Band Low Profile High Gain Low SAR Antenna AMC-Backed for WBAN Applications. IEEE Trans. Antennas Propag. 2019, 67, 6378–6388. [Google Scholar] [CrossRef]
- Le, T.T.; Yun, T.Y. Miniaturization of a Dual-Band Wearable Antenna for WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1452–1456. [Google Scholar] [CrossRef]
- Yalduz, H.; Tabaru, T.E.; Kilic, V.T.; Turkmen, M. Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications. AEU-Int. J. Electron. Commun. 2020, 126, 153465. [Google Scholar] [CrossRef]
- Hengroemyat, Y.; Kaewthai, T.; Akkaraekthalin, P.; Thaiwirot, W. A Flexible Dual-Band Antenna with Stable Radiation Pattern for Wearable Application. In Proceedings of the 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 9–12 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
S. No. | Frequency | Applications |
---|---|---|
1. | 402–405 MHz | Medical Implant Communications Service (MICS) |
2. | 402–405 MHz, 863–950 MHz | Wireless Medicals Telemetry Services (WMTS) |
3. | 902–928 MHz, 950–958 MHz, 2360–2400 MHz, 2400–2483.5 MHz | Industrial, Scientific, and Medical (ISM) |
4. | 3.1–10 GHz | Ultra-Wideband |
Ref. | Antenna Type and Shape | Dimension (λ) | Substrate Material | Frequency (GHz) | Gain (dB) | Application |
---|---|---|---|---|---|---|
[18] | Wearable Textile Antenna | 0.24 × 0.24 | Textile Materials | 2.4–2.5 | 3.5 | Healthcare and Communication |
[19] | UWB Patch Antenna | 0.21 × 0.26 | Denim Substrate | 3.1–10.6 | 6.2 | Early Breast Cancer Detection |
[20] | Dual-Band Patch Antenna | 0.17 × 0.17 | Poly-Cotton Textile | 5.8 and 8.3 | 8.73 and 4.64 | Wearable Monitoring |
[21] | Frequency Selective Surface Textile Antenna | 0.3 × 0.42 | Textile-Based FSS Reflector | 1.5–6.0 | Not specified | Wearable Body Area Network |
[22] | Dual-Band Textile Antenna | 0.18 × 0.18 | Conductive Textile Layers | 0.868 and 2.4 | Not specified | Military, Industrial, and Telemedicine |
Ref. No. | Antenna Type | Frequency Range (GHz) | Medical Application | Key Characteristics | Advantages |
---|---|---|---|---|---|
[31] | Patch Antenna | 3–10 (C/X band) | Breast cancer detection | Compact, low-profile | Low-cost fabrication |
[32] | Slot Antenna | 1–6 (S/C band) | Brain stroke detection | Wideband, linear, or circular slots | High gain, good directivity |
[33] | Vivaldi Antenna | 1–10 (S/C/X band) | Breast tissue imaging | Slot antenna with wide bandwidth | High sensitivity |
[34] | Horn Antenna | 0.3–30 (UHF/L/S band) | Lung disease diagnosis | Directional antenna | Deep penetration into tissues |
[35] | Array Antenna | 10–30 (K/Ku band) | High-resolution 3D imaging | Multiple smaller antennas | High-resolution imaging |
[36] | Metamaterial Antenna | 30–100 | Cancer detection | Advanced control over electromagnetic waves | Compact and flexible |
Refs. | Antenna Type | Dielectric Constant | Dimensions of Wavelength (λ) | Frequency (GHz) | Wavelength (mm) | Gain (dB) | Return Loss (dB) | Material | Application | Features |
---|---|---|---|---|---|---|---|---|---|---|
[37] | Planar antenna | 1.7 | 0.2 × 0.2 | 2.5–20 | 12–120 | 3.17 | −27 | Textile substrate | UWB Medical | Broad UWB coverage |
[38] | Patch Antenna | 1.6 | 0.12 × 0.13 | 2.4 to 2.5 | 120–125 | 1.24 | −36 | FR4 substrate | ISM band | Body-centric environments |
[39] | Patch Antenna | 1.67 | 0.1 × 0.093 | 2–4 | 75–150 | N/A | −31 | RT/Duroid | Breast Cancer | High sensitivity for breast tissue |
[40] | Loop Antenna | 1.3 | 0.016 × 0.15 | 2.45 | 122.45 | 1.86 | −34 | Polymer substrate | Breath Monitoring | Compact design for monitoring |
[41] | Dual-Band Antenna | 3 | 0.136 × 0.146 | 2.45 and 5.8 | 51.72 | 3.74 | −39 | Textile substrate | WBAN | Dual-band operation |
[42] | Dipole Antenna | 1.44 | 0.86 × 0.9 | 2.45 | 122.45 | N/A | −13.6 | Conductive fabric | Wireless Comm. | Large area design |
[43] | Monopole Antenna | 1.44 | 0.33 × 0.33 | 1.0 to 5.0 | 60–300 | N/A | −26 | Textile substrate | Bone health Detection | Deeper tissue penetration |
[44] | Patch Antenna | 3.5 | 0.08 × 0.08 | 2.45 | 122.45 | N/A | −30 | Flexible polymer | Medical | Specific point-of-care [1] diagnostics |
[45] | Planar Inverted-F Antenna | 1.28 | 0.09 × 0.09 | 2.45–5.8 | 51.72–122 | 1.68 | −26 and −19 | Textile substrate | Medical | Data transmission in healthcare |
[46] | Microstrip Patch Antenna | 1.8 | 0.82 × 0.73 | 2.45 | 122.45 | 4.79 | −34 | Flexible polymer | WLAN | Wearable WLAN systems |
[47] | Monopole Antenna | 1.05 | 0.7 × 0.47 | 5.5–7 | 42.8–54.54 | 4.6 | N/A | Flexible substrate | X-band | X-band communication |
[48] | Patch Antenna | 3 | 0.216 × 0.216 | 2.45 | 122.45 | 4.36 | N/A | Textile substrate | Knee bone monitoring | Monitoring with minimal discomfort |
Conductive Materials | Conductivity (S/m) | Thickness (mm) |
---|---|---|
Egaln Liquid | 2.5 × 105 | 0.08 |
Polyleurethene–Nanoparticle Composite | 1.1 × 106 | 0.0065 |
Zoflex + Copper | 1.93 × 105 | 0.175 |
Silver Flakes Fluorine Rubber | 8.5 × 104 | ----- |
AgNW/PDMS | 8.1 × 105 | 0.5 |
PANI/CCo Composite | 7.3 × 103 | 0.075 |
Copper Coated Taffeta | 3.4 × 106 | 0.15 |
Graphene | 3.3 × 104 | 0.01 |
Ref. | Materials | Dielectric Constant | Frequency Range | Loss Tangent | Substrate Height |
---|---|---|---|---|---|
[61] | Flannel | 1.7 | 2–20 GHz | 0.025 | -- |
[62] | Polyester | 1.44 | 2.6–5.8 GHz | 0.0045 | 2.85 mm |
[47] | Polyurethane | 1.28 | 2.38–6 GHz | 0.016 | 2.4 mm |
[63] | Fleece | 1.60 | 2.45 GHz | 0.0400 | 3 mm |
[64] | Felt | 1.38 | 2.6–3.95 GHz | 0.023 | 3.5 mm |
[65] | Tween | 1.69 | 2.6–3.95 GHz | 0.0084 | -- |
[66] | Perspex | 2.57 | 2.6–3.95 GHz | 0.008 | - |
[57] | Moleskin | 1.51 | 2.6–3.95 GHz | 0.02 | 3 mm |
[55] | Cordura/Lycra | 1.5 | 2.6 GHz | 0.0093 | 1.6 mm |
[67] | Quartzes fabric | 1.95 | 2.6 GHz | 0.0004 | 1.3 micron |
[68] | Cotton | 1.58 | 2.4 GHz | 0.115 | 0.7mm |
[69] | Jeans | 1.68 | 2.4 GHz | 0.05 | 2.5mm |
[68] | Silk | 1.5 | 2.45–5.8 GHz | 0.012 | 0.254 mm |
[32] | PTEE | 2.1 | 2.6–5 GHz | 0.0004 | 6 mm |
[70] | Panama | 2.12 | 2.4–5.8 GHz | 0.018 | 1.6mm |
[71] | Rogers Duroid RO3003TM | 3 | 2.45 GHz | 0.001 | 2.4 mm |
[72] | PDMS | 2.65 | 2.45 GHz | 0.02 | 2.5 mm |
Ref. | Substrate | Radius | Bandwidth (GHz) | Application |
---|---|---|---|---|
[59] | Zelt | 15, 25, 35 | 2.35 | ISM band |
[73] | Jeans | ----- | 3.09–3.94 4.23–5.65 | Wi-Max, 5G lower band |
[78] | Cotton | X-, Y-bent condition | 2.45 | ISM band |
[79] | Felt | 30, 35, 50 | 0.915 | UHF-RFID Tag |
[27] | Synthetic fabric | Z-, Y-axis | 1.198–4.055 | UWB |
[80] | Shielding conducting fabric | 35, 40, 50, 70 | 2.4 | ISM band |
[81] | Denim | 10°, 60°, 90°, 150° | 3.37 | Wi-Max |
[70] | Polyester textile | 0, 10, 20, 30, 40, 50, 60 | 7–28 | WBAN, UWB |
[79] | Felt | 40°, 60°, 80° | 2.45, 5.8 | LTE, WLAN |
[79] | Thin planner textile | 0°, 45°, 90° | 2.45 | WBAN |
[80] | Denim | 45° | 2.45 | ISM band |
[77] | Polyester | X-, Y-bent condition | 1.575 | GPS |
[27] | Zelt | Crumping condition | 2.43 | ISM band |
[80] | Fleece | (20, 40, 70) | 2.45, 5.8 | ISM band |
[81] | Woven cotton | Crumping condition | 2.45 | ISM band |
[82] | Pl substrate | X-, Y-bent condition | 2.4 | ISM band |
[83] | Flexible felt | 10°, 20°, 35° | 5.8 | ISM band |
[84] | Jeans | X-, Y-bent, crumping condition | 3.5, 5.8 | Wi-Max, ISM band |
SAR (W/Kg) | 2.45 GHz | 5.8 GHz | SAR (W/Kg) |
---|---|---|---|
1 g | 17.5 | 9.3 | 1 g |
10 g | 8.99 | 4.08 | 10 g |
Ref. | Antenna Size | Size (mm2) | Operating Frequency (GHz) | SAR 1 gm (W/Kg) | SAR 10 gm (W/Kg) |
---|---|---|---|---|---|
[78] | Rectangular patch antenna with inset feed line | 51 × 45 | 2.45 | 0.54 | 0.486 |
[79] | T-shaped rectangular patch | 70 × 70 | 2.45 | 0.0323 | 0.0153 |
[80] | Rectangular patch antenna with PIN diodes | 113 × 99 | 4.85 | 0.024 | 0.353 |
[81] | Rectangular patch antenna | 90 × 90 | 2.45 | 0.332 | 0.0234 |
[89] | Circular patch antenna | 100 × 100 | 2.45, 5.8 | 0.042 | 0.09 |
[90] | E-shaped antenna | 50 × 50 | 3.37 | 1.14 | 1.4 |
[91] | Folded ring-shaped antenna | 60 × 60 | 2.45/3.45 | 0.2 | 0.1 |
[92] | L-shaped rectangular antenna | 42 × 13 | 2.45, 5.8 | 0.028 | 0.68 |
[93] | Planar inverted-F antenna | 60 × 26 | 1.82–3.72 | 0.03 | 1.6018 |
[80] | Patch antenna | 101 × 96 | 2.4 | 0.24 | 0.003 |
[94] | C-shaped etching slot | 18 × 19 | 0.09–3.94 4.23–5.65 | 1.58 | 0.91 |
[95] | Patch antenna | 64.1 × 50 | 2.45 | 0.5 | 1.06 |
Circle-shaped patch | 40 × 40 | 0.01–5.30 8.12–12.35 | 0.12 | 0.07 |
Refs. No. | Techniques Used | Material Used | SAR Without Reduction (W/kg) | SAR with Reduction Technique (W/kg) | SAR per 1 or 10 gm Tissue | Frequency (GHz) |
---|---|---|---|---|---|---|
[64] | Electromagnetic band gap | Roger Duroid | 7.18/7.96 | 0.31/0.42 | 10 | 2.45/5.8 |
[69] | Metamaterial | Textile | 7.78 | 0.0283 | 1 | 2.4 |
[98] | Electromagnetic band gap | Denim | - | 0.364/0.165 | 1/10 | 2.4 |
[103] | Artificial magnetic connector | Taconic CRE-10 | 1.4 | 0.7 | 10 | 1.97 |
[105] | Metal reflector | Aluminum | - | 0.20 | 1 | 2.44 |
[110] | Electromagnetic band gap | Fabric-Based | 5.77/6.62 | 0.024/0.016 | 1 | 1.8/2.45 |
[106] | Electromagnetic band gap | Textile | 5.41 | 0.0545 | 1 | 2.4 |
[107] | Electromagnetic band gap | Roger’s Material | 2.36 | 1.77 | 10 | 2.4 |
[108] | Frequency selective surface array | Textile | 5.1972 | 0.1641 | 1 | 2.45 |
[109] | Artificial magnetic connector | denim | 46.9 | Less than 1.6 | 1 | 5.8 |
[110] | Artificial magnetic connector | Polymer | 2 | 0.29 | 1 | 2.45 |
[111] | Electromagnetic band gap | PDMS | 6.56 | 0.0251 | 1 | 2.4 |
[112] | Artificial magnetic connector | Flexible Conductive | 4.2 | 1.24 | 10 | 24 |
[113] | Meta surface | RT/Duroid | 6.6/11.7 | 0.0646/0.0268 | 1 | 5.2,5.8 |
[114] | Electromagnetic band gap | Polymer-Based | 8.72 | 0.036 | 1 | 2.4 |
[115] | Flexible printed circuit board | Flexible Polymer | - | 0.474/0.11 | 1/10 | 5.8 |
[116] | Metamaterial | Polymer | 6.27 | 0.0671 | 10 | UWB |
[117] | Artificial magnetic connector | Textile | - | 0.903/0.338 | 1 | 3.5/5.8 |
[118] | Planar antenna | Flexible Metallic Coating | - | 0.919/0.517 | 1 | 2.45/5.85 |
[84] | Metasurface | Textile | 7.51/8.64 | 0.0257/0.0358 | 1 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Mishra, R.; Kapoor, A.; Singh, S. A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas. Telecom 2025, 6, 3. https://doi.org/10.3390/telecom6010003
Singh S, Mishra R, Kapoor A, Singh S. A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas. Telecom. 2025; 6(1):3. https://doi.org/10.3390/telecom6010003
Chicago/Turabian StyleSingh, Sunaina, Ranjan Mishra, Ankush Kapoor, and Soni Singh. 2025. "A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas" Telecom 6, no. 1: 3. https://doi.org/10.3390/telecom6010003
APA StyleSingh, S., Mishra, R., Kapoor, A., & Singh, S. (2025). A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas. Telecom, 6(1), 3. https://doi.org/10.3390/telecom6010003