Previous Issue
Volume 5, December
 
 

Telecom, Volume 6, Issue 1 (March 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 5898 KiB  
Article
Circularly Polarized Asymmetric Single-Point Probe-Fed Hybrid Dielectric Resonator Antenna for Wireless Applications
by NareshKumar Darimireddy
Telecom 2025, 6(1), 8; https://doi.org/10.3390/telecom6010008 - 16 Jan 2025
Viewed by 444
Abstract
This paper presents a hybrid dielectric resonator antenna (HDRA) for circularly polarized (CP) radiation at 5 GHz, designed for WLAN applications. The antenna features a single probe feed that excites a combination of a circular ring patch and a cylindrical dielectric resonator (DR) [...] Read more.
This paper presents a hybrid dielectric resonator antenna (HDRA) for circularly polarized (CP) radiation at 5 GHz, designed for WLAN applications. The antenna features a single probe feed that excites a combination of a circular ring patch and a cylindrical dielectric resonator (DR) element, achieving stable gain across a wide bandwidth. The parametric analysis and vector E-field distribution of the proposed antenna presents the optimization, and it is evidence of CP radiation, respectively. The hybrid DRA has a reflection loss (RL) bandwidth of 485 MHz, from 4740 to 5225 MHz, and an axial ratio (AR) bandwidth of 150 MHz, ranging from 4950 to 5100 MHz. It achieves a peak gain of 7.03 dBic at 5 GHz, making it suitable for missile tracking, data link communications, and IEEE 802.11n WLAN systems. Measurements of a prototype in an anechoic chamber show a close match with simulation results. Full article
Show Figures

Figure 1

25 pages, 4089 KiB  
Article
Taguchi Method-Based Synthesis of a Circular Antenna Array for Enhanced IoT Applications
by Wided Amara, Ramzi Kheder, Ridha Ghayoula, Issam El Gmati, Amor Smida, Jaouhar Fattahi and Lassaad Latrach
Telecom 2025, 6(1), 7; https://doi.org/10.3390/telecom6010007 - 14 Jan 2025
Viewed by 487
Abstract
Linear antenna arrays exhibit radiation patterns that are restricted to a half-space and feature axial radiation, which can be a significant drawback for applications that require omnidirectional coverage. To address this limitation, the synthesis method utilizing the Taguchi approach, originally designed for linear [...] Read more.
Linear antenna arrays exhibit radiation patterns that are restricted to a half-space and feature axial radiation, which can be a significant drawback for applications that require omnidirectional coverage. To address this limitation, the synthesis method utilizing the Taguchi approach, originally designed for linear arrays, can be effectively extended to two-dimensional or planar antenna arrays. In the context of a linear array, the synthesis process primarily involves determining the feeding law and/or the spatial distribution of the elements along a single axis. Conversely, for a planar array, the synthesis becomes more complex, as it requires the identification of the complex weighting of the feed and/or the spatial distribution of sources across a two-dimensional plane. This adaptation to planar arrays is facilitated by substituting the direction θ with the pair of directions (θ,ϕ), allowing for a more comprehensive coverage of the angular domain. This article focuses on exploring various configurations of planar arrays, aiming to enhance their performance. The primary objective of these configurations is often to minimize the levels of secondary lobes and/or array lobes while enabling a full sweep of the angular space. Secondary lobes can significantly impede system performance, particularly in multibeam applications, where they restrict the minimum distance for frequency channel reuse. This restriction is critical, as it affects the overall efficiency and effectiveness of communication systems that rely on precise beamforming and frequency allocation. By investigating alternative planar array designs and their synthesis methods, this research seeks to provide solutions that improve coverage, reduce interference from secondary lobes, and ultimately enhance the functionality of antennas in diverse applications, including telecommunications, radar systems, and wireless communication. Full article
Show Figures

Figure 1

22 pages, 9620 KiB  
Article
New Approach of Blind Adaptive Equalizer Based on Genetic Algorithms
by Caroline A. D. Silva and Marcelo A. C. Fernandes
Telecom 2025, 6(1), 6; https://doi.org/10.3390/telecom6010006 - 10 Jan 2025
Viewed by 419
Abstract
This paper introduces a novel approach to blind adaptive equalization for digital communication systems using genetic algorithms (GAs). Unlike traditional methods that rely on linear programming and suffer from local minima issues, this technique utilizes a stochastic linear programming cost function with GAs [...] Read more.
This paper introduces a novel approach to blind adaptive equalization for digital communication systems using genetic algorithms (GAs). Unlike traditional methods that rely on linear programming and suffer from local minima issues, this technique utilizes a stochastic linear programming cost function with GAs for robust optimization. The proposed method termed Blind Linear Equalizer based on genetic algorithm (BLE-GA) enhances performance by leveraging a GA’s ability to handle stochastic variables, offering rapid convergence and resilience against signal noise and inter-symbol interference. Extensive simulations demonstrate the effectiveness of BLE-GA across different QAM systems, outperforming conventional techniques like the Constant Modulus Algorithm in scenarios with high modulation levels. This study validates the potential of using GAs in adaptive blind equalization to achieve reliable and efficient communication, even in complex and noisy channel conditions. Full article
Show Figures

Figure 1

14 pages, 620 KiB  
Article
Performance Analysis of NR-DCSK Based Copper Cable Model for G.fast Communication
by Ali Jaber Al-Askery, Ahmed Kamil Hasan Al-Ali and Fadhil Sahib Hasan
Telecom 2025, 6(1), 5; https://doi.org/10.3390/telecom6010005 - 9 Jan 2025
Viewed by 441
Abstract
This article studies the performance of the copper wire communication channel in the existence of the Middleton impulsive noise model. Differential chaos shift keying (DCSK) scheme is implemented with a noise reduction (NR) technique to mitigate the impulsive noise effect and improve system [...] Read more.
This article studies the performance of the copper wire communication channel in the existence of the Middleton impulsive noise model. Differential chaos shift keying (DCSK) scheme is implemented with a noise reduction (NR) technique to mitigate the impulsive noise effect and improve system performance. The proposed communication system is simulated using Monte Carlo simulation using MATLAB 2023 and the result is compared with the derived theoretical performance. The use of NR technique in accordance with the proposed model has improved the performance and promoted its use with G.fast Communication. Full article
Show Figures

Figure 1

14 pages, 947 KiB  
Article
Simulation Framework for Detection and Localization in Integrated Sensing and Communication Systems
by Andrea Ramos, Saúl Inca, Mireia Ferrer, Daniel Calabuig, Sandra Roger and Jose F. Monserrat
Telecom 2025, 6(1), 4; https://doi.org/10.3390/telecom6010004 - 8 Jan 2025
Viewed by 501
Abstract
Integrated Sensing and Communication (ISAC) systems have emerged as a key component for Sixth Generation (6G) networks, enhancing resource efficiency and enabling diverse applications. Currently, ISAC systems have been recognized as a leading trend for future standardization, i.e., International Mobile Telecommunications (IMT)-2030. As [...] Read more.
Integrated Sensing and Communication (ISAC) systems have emerged as a key component for Sixth Generation (6G) networks, enhancing resource efficiency and enabling diverse applications. Currently, ISAC systems have been recognized as a leading trend for future standardization, i.e., International Mobile Telecommunications (IMT)-2030. As in the previous IMT-2020 standardization, the emphasis has been on developing a methodology for assessing network conditions, with one of the crucial approaches incorporating system-level simulations. However, within this framework, there has been a notable absence of proposed abstractions for the physical layer of ISAC systems, which are valuable for system-level simulators. The physical abstraction process helps reduce computational simulation costs, enabling efficient and rapid evaluation of system conditions. Therefore, this paper aims to fill this gap by outlining the key aspects and metrics recommended for a physical layer abstraction in sensing applications within ISAC frameworks. Applying physical abstraction in the context of target localization and detection algorithms may enable an initial understanding and evaluation of ISAC system performance. These algorithms are proposed as an example of simulating the sensing functionalities to be abstracted, which are based on a stochastic geometric channel model. Orthogonal Frequency Division Multiplexing (OFDM) symbols play a crucial role in target position estimation. The findings show that doubling OFDM symbols improves the detection probability by 3 dB in terms of Signal to Noise Ratio (SNR). Finally, the proposed Physical Layer Abstraction (PLA) method produces performance metrics as figures and lookup tables tailored for system-level simulators. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

34 pages, 3762 KiB  
Review
A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas
by Sunaina Singh, Ranjan Mishra, Ankush Kapoor and Soni Singh
Telecom 2025, 6(1), 3; https://doi.org/10.3390/telecom6010003 - 3 Jan 2025
Viewed by 826
Abstract
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require [...] Read more.
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require seamless integration with the human body while maintaining optimal performance under deformation and environmental stress. Return loss, gain, bandwidth, efficiency, and the SAR are some of the most important parameters that define the performance of an antenna. Their interactions with human tissues are also studied in greater detail. Such studies are essential to ensure that wearable and body-centric communication systems perform optimally, remain safe, and are in compliance with regulatory standards. Advanced materials, including textiles, polymers, and conductive composites, are analyzed for their electromagnetic properties and mechanical resilience. This study also explores innovative fabrication techniques, such as inkjet printing, screen printing, and embroidery, which enable scalable and cost-effective production. Additionally, solutions for SAR optimization, including the use of metamaterials, electromagnetic band gap (EBG) structures, and frequency-selective surfaces (FSSs), are discussed. This review highlights the transformative potential of wearable antennas in healthcare, the IoT, and next-generation communication systems, emphasizing their adaptability for real-time monitoring and advanced wireless technologies, such as 5G and 6G. The integration of energy harvesting, biocompatible materials, and sustainable manufacturing processes is identified as a future direction, paving the way for wearable antennas to become integral to the evolution of smart healthcare and connected systems. Full article
Show Figures

Figure 1

35 pages, 2132 KiB  
Review
Power Control Techniques for Interference Management—A Systematic Review
by Nthambeleni Reginald Netshikweta and Mbuyu Sumbwanyambe
Telecom 2025, 6(1), 2; https://doi.org/10.3390/telecom6010002 - 26 Dec 2024
Viewed by 658
Abstract
Applying optimal power control techniques in wireless networks is invaluable to mitigating interference among mobile devices. This review seeks to evaluate the depth and extent of the application of power control in 5G wireless networks through a systematic literature review. This review includes [...] Read more.
Applying optimal power control techniques in wireless networks is invaluable to mitigating interference among mobile devices. This review seeks to evaluate the depth and extent of the application of power control in 5G wireless networks through a systematic literature review. This review includes journal articles from 2018 to 2023 indexed in the Scopus, Web of Science (WoS), and IEEE Xplore databases. We used the following search string to search articles from each database: (*power control” AND “resource management” OR interference management AND 5G mobile communication). We obtained 3561 articles from the Scopus, WoS, and IEE Xplore databases with respective counts of 254, 728, and 2579. We paid attention to journal articles to ensure the quality of the review. After carefully assessing each record, we selected 770 journal articles using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Using R package software, we performed analyses based on the number of citations, keyword co-occurrence, and trending topics. This review reveals that various power control taxonomies address interference in 5G wireless networks. The results confirm continuous growth in the study, signifying the need for further exploration. Full article
Show Figures

Figure 1

17 pages, 2752 KiB  
Article
Fountain Coding Based Two-Way Relaying Cognitive Radio Networks Employing Reconfigurable Intelligent Surface and Energy Harvesting
by Hieu T. Nguyen, Nguyen-Thi Hau, Nguyen Van Toan, Vo Ta Ty and Tran Trung Duy
Telecom 2025, 6(1), 1; https://doi.org/10.3390/telecom6010001 - 25 Dec 2024
Viewed by 464
Abstract
This paper examines two-way relaying cognitive radio networks utilizing fountain coding (FC), reconfigurable intelligent surfaces (RIS), and radio frequency energy harvesting (EH). In the proposed schemes, two secondary sources attempt to exchange data with each other through the assistance of an RIS deployed [...] Read more.
This paper examines two-way relaying cognitive radio networks utilizing fountain coding (FC), reconfigurable intelligent surfaces (RIS), and radio frequency energy harvesting (EH). In the proposed schemes, two secondary sources attempt to exchange data with each other through the assistance of an RIS deployed in the network. Using FC, one source sends its encoded packets to the other source, which must collect enough packets for a successful data recovery. The transmit power of the two sources is adjusted according to an interference constraint given by a primary user and the energy harvested from a power station. In the conventional scheme, one source continuously transmits FC packets to the other, using the maximum number of transmissions allowed. In the modified scheme, as soon as one source collects a sufficient number of FC packets, it notifies the other source to stop transmission. We derive closed-form expressions of outage probability (OP) at each source, system outage probability (SOP), and average number of FC-packet transmissions for the successful data exchange of the considered schemes over Rayleigh fading channels. Simulation results are provided to validate our analysis, to compare the performance of the considered schemes, and to examine the impact of key parameters on performance. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
Show Figures

Figure 1

Previous Issue
Back to TopTop