A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Tris(2-chloroethyl) Amine
2.3. Synthesis of Tris(2-azidoethyl) Amine
2.4. Synthesis of Alkyne Precursor
2.5. Synthesis of DTC-SSM
2.6. Synthesis of T-SSM
2.7. Interaction Study of Molecules and Proteins
2.8. LC-MS, FT-IR and NMR
2.9. Molecular Docking Studies
3. Results and Discussion
3.1. Design, Synthesis, and Characterization
3.1.1. Synthesis of the Tris-Chloro, Tris-Azide and Alkyne Precursors
3.1.2. Synthesis of DTC-Based Star-Shaped Molecules (DTC-SSM)
3.1.3. Synthesis of Triazole Based Star-Shaped Molecules (T-SSM)
3.2. Comparison of Properties between DTC-SSM and T-SSM
3.3. Protein Binding Studies of Molecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baghershiroudi, M.; Safa, K.D.; Adibkia, K.; Lotfipour, F. Synthesis and antibacterial evaluation of new sulfanyltetrazole derivatives bearing piperidine dithiocarbamate moiety. Synth. Commun. 2018, 48, 323–328. [Google Scholar] [CrossRef]
- Laskar, S.; Sánchez-Sánchez, L.; Flores, S.M.; López-Muñoz, H.; Escobar-Sánchez, M.L.; López-Ortiz, M.; Hernández-Rodríguez, M.; Regla, I. Identification of (1S, 4S)-2, 5-diazabicyclo [2.2.1] heptane-dithiocarbamate-nitrostyrene hybrid as potent antiproliferative and apoptotic inducing agent against cervical cancer cell lines. Eur. J. Med. Chem. 2018, 146, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Li, K.; Meng, X.; Li, R.; Li, P. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohydr. Polym. 2012, 89, 388–393. [Google Scholar] [CrossRef]
- Oliveira, J.W.D.F.; Rocha, H.A.O.; de Medeiros, W.M.T.Q.; Silva, M.S. Application of dithiocarbamates as potential new antitrypanosomatids-drugs: Approach chemistry, functional and biological. Molecules 2019, 24, 2806. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, Y.; Zhang, W.; Zhan, L.; Yu, Y.; Chen, Y.; Jia, W.; Liu, Z.; Qian, J.; Zhang, Y.; et al. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem. 2019, 171, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.S.; Mondal, D.K.; Datta, R. Identification of metal dithiocarbamates as a novel class of antileishmanial agents. Antimicrob. Agents Chemother. 2015, 59, 2144–2152. [Google Scholar] [CrossRef]
- Bai, L.; Hu, H.; Fu, W.; Wan, J.; Cheng, X.; Zhuge, L.; Xiong, L.; Chen, Q. Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J. Hazard. Mater. 2011, 195, 261–275. [Google Scholar] [CrossRef]
- Mujawar, S.; Utture, S.C.; Fonseca, E.; Matarrita, J.; Banerjee, K. Validation of a GC–MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem. 2014, 150, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Rohit, J.V.; Basu, H.; Singhal, R.K.; Kailasa, S.K. Development of p-nitroaniline dithiocarbamate capped gold nanoparticles-based microvolume UV–vis spectrometric method for facile and selective detection of quinalphos insecticide in environmental samples. Sens. Actuators B Chem. 2016, 237, 826–835. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Yu, G.; Meng, X. Removal of F− from aqueous solution using Zr (IV) impregnated dithiocarbamate modified chitosan beads. J. Chem. Eng. 2013, 228, 224–231. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2014. [Google Scholar]
- Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes. Int. J. Mol. Sci. 2023, 24, 3566. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, L.; Olivito, F.; Algieri, V.; Costanzo, P.; Jiritano, A.; Tallarida, M.A.; Tursi, A.; Sposato, C.; Feo, A.; De Nino, A. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive. Polymers 2021, 13, 2802. [Google Scholar] [CrossRef]
- Cheekatla, S.R.; Thurakkal, L.; Jose, A.; Barik, D.; Porel, M. Aza-Oxa-Triazole Based Macrocycles with Tuneable Properties: Design, Synthesis, and Bioactivity. Molecules 2022, 27, 3409. [Google Scholar] [CrossRef]
- Thurakkal, L.; Nanjan, P.; Porel, M. Design, synthesis and bioactive properties of a class of macrocycles with tuneable functional groups and ring size. Sci. Rep. 2022, 12, 4815. [Google Scholar] [CrossRef] [PubMed]
- Reith, M.A.; De Franceschi, I.; Soete, M.; Badi, N.; Aksakal, R.; Du Prez, F.E. Sequence-Defined Mikto-Arm Star-Shaped Molecules. J. Am. Chem. Soc. 2022, 144, 7236–7244. [Google Scholar] [CrossRef]
- Kanibolotsky, A.L.; Laurand, N.; Dawson, M.D.; Turnbull, G.A.; Samuel, I.D.W.; Skabara, P.J. Design of Linear and Star-Shaped Macromolecular Organic Semiconductors for Photonic Applications. Acc. Chem. Res. 2019, 52, 1665–1674. [Google Scholar] [CrossRef]
- Yag, D.P.; Oo, M.N.N.L.; Deen, G.R.; Li, Z.; Loh, X.J. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol. Rapid Commun. 2017, 38, 1700410. [Google Scholar]
- Kanibolotsky, A.L.; Perepichka, I.F.; Skabara, P.J. Star-Shaped π-Conjugated Oligomers and Their Applications in Organic Electronics and Photonics. Chem. Soc. Rev. 2010, 39, 2695–2728. [Google Scholar] [CrossRef]
- Biela, T.; Duda, A.; Penczek, S. Enhanced Melt Stability of Star-Shaped Stereocomplexes as Compared with Linear Stereocomplexes. Molecules 2006, 39, 3710–3713. [Google Scholar] [CrossRef]
- Jose, A.; Porel, M. Backbone and Side Chain-Linker Tunability among Dithiocarbamate, Ester and Amide in Sequence-Defined Oligomers: Synthesis and Structure-Property-Function Relationship. Polym. Chem. 2022, 13, 2450–2458. [Google Scholar] [CrossRef]
- Olivito, F.; Amodio, N.; Di Gioia, M.L.; Nardi, M.; Oliverio, M.; Juli, G.; Tassone, P.; Procopio, A. Synthesis and preliminary evaluation of the anti-cancer activity on A549 lung cancer cells of a series of unsaturated disulfides. Med. Chem. Commun. 2019, 10, 116. [Google Scholar] [CrossRef]
- Altintop, M.D.; Özdemir, A.; Kaplancikli, Z.A.; Turan-Zitouni, G.; Temel, H.E.; Çiftçi, G.A. Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm. 2013, 346, 189–199. [Google Scholar] [CrossRef] [PubMed]
- El-Sagheer, A.H.; Sanzone, A.P.; Gao, R.; Tavassoli, A.; Brown, T. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc. Natl. Acad. Sci. USA 2011, 108, 11338–11343. [Google Scholar] [CrossRef]
- Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 2012, 19, 239–280. [Google Scholar] [CrossRef]
- Shinde, S.D.; Sakla, A.P.; Shankaraiah, N. An Insight into Medicinal Attributes of Dithiocarbamates: Bird’s Eye View. Bioorg. Chem. 2020, 105, 104346–104364. [Google Scholar] [CrossRef]
- Adokoh, C.K. Therapeutic Potential of Dithiocarbamate Supported Gold Compounds. RSC Adv. 2020, 10, 2975–2988. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Ajiboye, T.T.; Marzouki, R.; Onwudiwe, D.C. The Versatility in the Applications of Dithiocarbamates. Int. J. Mol. Sci. 2022, 23, 1317. [Google Scholar] [CrossRef] [PubMed]
- Thurakkal, L.; Cheekatla, S.R.; Porel, M. Superfast Capture of Iodine from Air, Water, and Organic Solvent by Potential Dithiocarbamate-Based Organic Polymer. Int. J. Mol. Sci. 2023, 24, 1466. [Google Scholar] [CrossRef] [PubMed]
- Crnogorac, G.; Schwack, W. Residue Analysis of Dithiocarbamate Fungicides. TrAC Trends Anal. Chem. 2009, 28, 40–50. [Google Scholar] [CrossRef]
- Saiyed, T.A.; Adeyemi, J.O.; Saibu, G.M.; Singh, M.; Oyedeji, A.O.; Hosten, E.C.; Onwudiwe, D.C. Bipyridine Adducts of Zn (II) and Ni (II) Bis (N-Methyl-N-Phenyl Dithiocarbamate): Synthesis, Characterization, and Biological Applications. J. Mol. Struct. 2023, 1274, 134335. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Fang, Y.; Liao, Z.; Zhang, Z.; Meng, L.; Zhang, Z. Exposure to Dithiocarbamate Fungicide Maneb in Vitro and in Vivo: Neuronal Apoptosis and Underlying Mechanisms. Environ. Int. 2023, 171, 107696. [Google Scholar] [CrossRef]
- Mufhandu, H.T.; Obisesan, O.S.; Ajiboye, T.O.; Mhlanga, S.D.; Onwudiwe, D.C. Antiviral Potential of Selected N -Methyl- N -Phenyl Dithiocarbamate Complexes against Human Immunodeficiency Virus (HIV). Microbiol. Res. 2023, 14, 355–370. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, C.; Wang, L. Enhancement of the Thermoelectric Performance. J. Mater. Chem. C. 2020, 14, 7096–7103. [Google Scholar] [CrossRef]
- Anthwal, A.; Singh, K.; Rawat, M.S.M.; Tyagi, A.K.; Aggarwal, B.B.; Rawat, D.S. C5-curcuminoid-dithiocarbamate based molecular hybrids: Synthesis and anti-inflammatory and anti-cancer activity evaluation. RSC Adv. 2014, 4, 28756–28764. [Google Scholar] [CrossRef]
- Yeo, C.I.; Tiekink, E.R.T. Insights into the Antimicrobial Potential of Dithiocarbamate Anions and Metal-Based Species. Inorganics 2021, 9, 48. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological Significance of Triazole Scaffold. J. Enzyme Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar]
- Miller, J.; Brooks, E.; Libeu, C.P.; Legleiter, J.; Hatters, D.; Curtis, J.; Cheung, K.; Krishnan, P.; Mitra, S.; Widjaja, K.; et al. Identifying Polyglutamine Protein Species in Situ That Best Predict Neurodegeneration. Nat. Publ. Gr. 2012, 8, 925–934. [Google Scholar] [CrossRef]
- Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today 2015, 51, 705–718. [Google Scholar] [CrossRef]
- Epple, S.; Modi, A.; Baker, Y.R.; We, E.; Traor, D.; Wanat, P.; Tyburn, A.E.S.; Shivalingam, A.; Taemaitree, L.; El-sagheer, A.H.; et al. A New 1,5-Disubstituted Triazole DNA Backbone Mimic with Enhanced Polymerase Compatibility. J. Am. Chem. Soc. 2021, 143, 16293–16301. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, S.; Ulusoy, N. Activity Studies of New and Highly Selective 1, 2, 3-Triazole Substituted 4-Hydroxybenzohyrdazide Derivatives. J. Mol. Struct. 2023, 1283, 135247–135263. [Google Scholar]
- Elmorsy, M.R.; Latif, E.A.; Gaffer, H.E.; Mahmoud, S.E.; Fadda, A.A. Anticancer Evaluation and Molecular Docking of New Pyridopyrazolo-Triazine and Pyridopyrazolo-Triazole Derivatives. Sci. Rep. 2023, 13, 2782. [Google Scholar] [CrossRef]
- Basar, A.; Hosen, F.; Kumar, B.; Hasan, R.; Shamim, S.M.; Bhuyian, T. Informatics in Medicine Unlocked Identification of Drug and Protein-Protein Interaction Network among Stress and Depression: A Bioinformatics Approach. Inform. Med. Unlocked 2023, 37, 101174–101184. [Google Scholar] [CrossRef]
- Jose, A.; Porel, M. Chemistry Probing the Interactions of Dansyl Appended Sequence-Defined Oligomers with Serum Albumins: Effect of Functionality, Hydrophobicity, and Architecture. J. Photochem. Photobiol. A Chem. 2023, 439, 114640–114652. [Google Scholar]
- Sun, H.; Wang, J. Novel Perspective for Protein—Drug Interaction Analysis: Atomic Force Microscope. Analyst 2023, 16, 454–474. [Google Scholar] [CrossRef]
- Mizutani, S.; Pauwels, E.; Stoven, V.; Goto, S.; Yamanishi, Y. Relating drug–protein interaction network with drug side effects. Bioinformatics 2012, 28, i522–i528. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Ranjith, D. Molecular Docking Studies of Aloe Vera for Their Potential Antibacterial Activity Using Argus Lab 4.0.1. Pharma Innov. J. 2019, 8, 481–487. [Google Scholar]
- Biovia, D.S. Discovery Visualizer Studio; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- Xu, J.; Avellan, A.; Li, H.; Liu, X.; Noël, V.; Lou, Z.; Wang, Y.; Kaegi, R.; Henkelman, G.; Lowry, G.V. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Adv. Mater. 2020, 32, 1906910–1906920. [Google Scholar] [CrossRef]
- Gakamskya, D.; Gakamskyb, A. Intrinsic fluorescence of proteins as a medical diagnostic tool. Int. J. Spectrosc. 2017, 29, 6–10. [Google Scholar]
Protein | Binding Energy (kcal/mol) | Binding Constant (Ksv in M−1) | ||
---|---|---|---|---|
DTC-SSM | T-SSM | DTC-SSM | T-SSM | |
HSA | −5.4 | −6.4 | 1.92 × 104 | 2.62 × 104 |
BSA | −5.4 | −6.4 | 1.81 × 104 | 2.37 × 104 |
Hemoglobin | −3.6 | −4.7 | 5.85 × 104 | 2.33 × 104 |
Ribonuclease | −4.5 | −5.4 | 1.28 × 104 | 2.13 × 104 |
Trypsin | −4.7 | −5.4 | 1.84 × 104 | 4.03 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barik, D.; Anand, G.; Cheekatla, S.R.; Porel, M. A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins. Organics 2023, 4, 219-231. https://doi.org/10.3390/org4020018
Barik D, Anand G, Cheekatla SR, Porel M. A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins. Organics. 2023; 4(2):219-231. https://doi.org/10.3390/org4020018
Chicago/Turabian StyleBarik, Debashis, Geethanjali Anand, Subba Rao Cheekatla, and Mintu Porel. 2023. "A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins" Organics 4, no. 2: 219-231. https://doi.org/10.3390/org4020018
APA StyleBarik, D., Anand, G., Cheekatla, S. R., & Porel, M. (2023). A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins. Organics, 4(2), 219-231. https://doi.org/10.3390/org4020018