Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, T.W.; Sanford, M.S. Palladium-Catalyzed Ligand-Directed C−H Functionalization Reactions. Chem. Rev. 2010, 110, 1147–1169. [Google Scholar] [CrossRef] [Green Version]
- Liron, F.; Oble, J.; Lorion, M.M.; Poli, G. Direct Allylic Functionalization through Pd-Catalyzed C-H Activation. Eur. J. Org. Chem. 2014, 2014, 5863–5883. [Google Scholar] [CrossRef]
- Sipos, G.; Drinkel, E.E.; Dorta, R. The Emergence of Sulfoxides as Efficient Ligands in Transition Metal Catalysis. Chem. Soc. Rev. 2015, 44, 3834–3860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed Transformations of Alkyl C–H Bonds. Chem. Rev. 2017, 117, 8754–8786. [Google Scholar] [CrossRef]
- Reed, S.A.; Mazzotti, A.R.; White, M.C. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C−H Amination. J. Am. Chem. Soc. 2009, 131, 11701–11706. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. Intra/Intermolecular Direct Allylic Alkylation via Pd(II)-Catalyzed Allylic C−H Activation. J. Am. Chem. Soc. 2008, 130, 12901–12903. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.M.; Liu, W.; Young, A.J.; White, M.C. General Allylic C–H Alkylation with Tertiary Nucleophiles. J. Am. Chem. Soc. 2014, 136, 5750–5754. [Google Scholar] [CrossRef]
- Liu, W.; Ali, S.Z.; Ammann, S.E.; White, M.C. Asymmetric Allylic C–H Alkylation via Palladium(II)/Cis-ArSOX Catalysis. J. Am. Chem. Soc. 2018, 140, 10658–10662. [Google Scholar] [CrossRef]
- Ma, R.; White, M.C. C–H to C–N Cross-Coupling of Sulfonamides with Olefins. J. Am. Chem. Soc. 2018, 140, 3202–3205. [Google Scholar] [CrossRef]
- Henderson, W.H.; Check, C.T.; Proust, N.; Stambuli, J.P. Allylic Oxidations of Terminal Olefins Using a Palladium Thioether Catalyst. Org. Lett. 2010, 12, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Z.; He, C.-Y.; Huang, Y.; Zhang, X. Thioether-Promoted Direct Olefination of Polyfluoroarenes Catalyzed by Palladium. Org. Lett. 2013, 15, 5266–5269. [Google Scholar] [CrossRef]
- Dai, Y.; Weng, J.; George, J.; Chen, H.; Lin, Q.; Wang, J.; Royzen, M.; Zhang, Q. Three-Component Protein Modification Using Mercaptobenzaldehyde Derivatives. Org. Lett. 2019, 21, 3828–3833. [Google Scholar] [CrossRef]
- Lee, A.; Ahn, S.; Kang, K.; Seo, M.-S.; Kim, Y.; Kim, W.Y.; Kim, H. Bicyclic Bridgehead Phosphoramidite (Briphos) Ligands with Tunable π-Acceptor Ability and Catalytic Activity in the Rhodium-Catalyzed Conjugate Additions. Org. Lett. 2014, 16, 5490–5493. [Google Scholar] [CrossRef]
- Du, L.; Cao, P.; Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Hydrogen-Bond-Promoted Palladium Catalysis: Allylic Alkylation of Indoles with Unsymmetrical 1,3-Disubstituted Allyl Acetates Using Chiral Bis(Sulfoxide) Phosphine Ligands. Angew. Chem. Int. Ed. 2013, 52, 4207–4211. [Google Scholar] [CrossRef] [PubMed]
- Mariz, R.; Luan, X.; Gatti, M.; Linden, A.; Dorta, R. A Chiral Bis-Sulfoxide Ligand in Late-Transition Metal Catalysis; Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to Electron-Deficient Olefins. J. Am. Chem. Soc. 2008, 130, 2172–2173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-A.; Dong, X.; Chen, M.-W.; Wang, D.-S.; Zhou, Y.-G.; Li, Y.-X. Highly Effective and Diastereoselective Synthesis of Axially Chiral Bis-Sulfoxide Ligands via Oxidative Aryl Coupling. Org. Lett. 2010, 12, 1928–1931. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, J.; Haldar, C.; Bisht, R.; Pandey, G.; Chattopadhyay, B. Meta Selective C–H Borylation of Sterically Biased and Unbiased Substrates Directed by Electrostatic Interaction. J. Am. Chem. Soc. 2021, 143, 7604–7611. [Google Scholar] [CrossRef]
- Dey, S.; Schepmann, D.; Wünsch, B. Role of the Phenolic OH Moiety of GluN2B-Selective NMDA Antagonists with 3-Benzazepine Scaffold. Bioorganic Med. Chem. Lett. 2016, 26, 889–893. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, J.; Tan, S.M.; Tan, D.; Lee, R.; Tan, C.-H. An Enantioconvergent Halogenophilic Nucleophilic Substitution (S N 2X) Reaction. Science 2019, 363, 400–404. [Google Scholar] [CrossRef]
- Kolesnikov, P.N.; Usanov, D.L.; Barablina, E.A.; Maleev, V.I.; Chusov, D. Atom- and Step-Economical Preparation of Reduced Knoevenagel Adducts Using CO as a Deoxygenative Agent. Org. Lett. 2014, 16, 5068–5071. [Google Scholar] [CrossRef]
- Scattolin, T.; Deckers, K.; Schoenebeck, F. Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Bench-Stable Precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 2017, 56, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Bisz, E.; Koston, M.; Szostak, M. N -Butylpyrrolidone (NBP) as a Non-Toxic Substitute for NMP in Iron-Catalyzed C(Sp 2)–C(Sp 3) Cross-Coupling of Aryl Chlorides. Green Chem. 2021, 23, 7515–7521. [Google Scholar] [CrossRef]
- SAINT. Part of Bruker APEX3 Software Package (Version 2016.9-0): Bruker AXS. 2016. Available online: https://www.brukersupport.com/ProductDetail/3177 (accessed on 6 June 2023).
- SADABS. Part of Bruker APEX3 Software Package (Version 2016.9-0): Bruker AXS. 2016. Available online: https://www.brukersupport.com/ProductDetail/3177 (accessed on 6 June 2023).
- SHELXT; Version 2014/5: G. M. Sheldrick. Acta Cryst. 2015, A71, 3–8.
- XL refinement program version 2016/6: G. M. Sheldrick. Acta Cryst. 2015, C71, 3–8.
- Das Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Oxidation of Sulfides to Sulfoxides and Sulfones with 30% Hydrogen Peroxide under Organic Solvent- and Halogen-Free Conditions. Tetrahedron 2001, 57, 2469–2476. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ryder, J.E.; Cooper, E.A. Naftifine: A Review. J. Cutan. Med. Surg. 2008, 12, 51–58. [Google Scholar] [CrossRef] [PubMed]
Oxidants | Solvents | Additives | Temperature | Time | Yield |
---|---|---|---|---|---|
Oxone (2 eq.) | CH2Cl2 | - | RT | O/N | N.D. |
NaIO4 (2 eq.) | CH2Cl2 | DDQ (2 eq.) | RT | O/N | N.D. |
MeOH | - | N.D. | |||
PhI(OAc)2 (2 eq.) | MeOH | (NH4)2CO3(2eq.) | RT | O/N | N.D. |
Sharpless reagents a | - | - | 0 °C | O/N | N.D. |
DMDO (2 eq.) | - | - | 0 °C | O/N | N.D. |
m-CPBA (2 eq.) | CH2Cl2 | - | 0 °C | 1 h | <5% |
TBHP(0.1 eq.) | 0 °C | 1 h | N.D. | ||
Acetone | - | 0 °C | 1 h | N.D. | |
THF | - | 0 °C | 1 h | N.D. | |
H2O2 (2 eq.) | HOAc | - | RT | O/N | <10% conversion |
MeOH | - | RT | O/N | N.D. | |
HFIP | - | RT | O/N | N.D. | |
THF | Na2WO4·2H2O | RT | O/N | <5% | |
Acetone:H2O b | Na2WO4·2H2O | 0 °C | 50 min | 51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Zheng, J.; Evans, A.H.; Zhang, Q. Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands. Organics 2023, 4, 289-296. https://doi.org/10.3390/org4020023
Wen Y, Zheng J, Evans AH, Zhang Q. Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands. Organics. 2023; 4(2):289-296. https://doi.org/10.3390/org4020023
Chicago/Turabian StyleWen, Yuming, Jianfeng Zheng, Alex H. Evans, and Qiang Zhang. 2023. "Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands" Organics 4, no. 2: 289-296. https://doi.org/10.3390/org4020023
APA StyleWen, Y., Zheng, J., Evans, A. H., & Zhang, Q. (2023). Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands. Organics, 4(2), 289-296. https://doi.org/10.3390/org4020023