Architecture of Molecular Logic Gates: From Design to Application as Optical Detection Devices
Abstract
:1. Introduction
2. Analytes
2.1. Potential Toxic Metals
2.2. Alkaline and Alkaline Earth Metals
2.3. Anionic Species
2.4. Neutral Species
3. Optical Detection Devices
4. Planning Optical Devices Based on Sensing Mechanism
4.1. Photoinduced Electron Transfer (PET)
4.2. Intramolecular Charge Transfer (ICT)
4.3. Fluorescence Resonance Energy Transfer (FRET)
4.4. Chelation-Enhanced Fluorescence (CHEF)
4.5. Metal-to-Ligand Charge Transfer (MLCT)
4.6. Excited State Intramolecular Proton Transfer (ESIPT)
4.7. Aggregation
5. Architecture of Optical Sensor Devices
5.1. Choosing the Signaling Unit
5.2. Choosing the Receptor Unit
5.3. Choosing the Assembly of the Device
5.4. Integrating the Molecular Architecture
6. Strategies for Building Optical Devices Based on Interaction Type
6.1. Acid-Base Reactions or Hydrogen Bonding (H-Bonds) Interactions
6.2. Displacement Assays
6.3. Chromo- and Fluororeagents
6.4. Chemosensor
6.5. Chemodosimeters
7. Logical-Based Devices: Molecular Logic Gates (MLGs)
8. The Architecture of MLGs Based on Truth Tables’ Interpretation
8.1. “YES” Logic
8.2. “NOT” Logic
8.3. “AND” Logic
8.4. “NAND” Logic
8.5. “INHIBIT” Logic
8.6. “IMPLICATION” Logic
8.7. More Elaborated MLGs
9. Molecular Machines as Logical Optical Devices
10. MLGs Based on Polymer Matrices
11. Other Applications
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACQ | Aggregation-caused quenching |
AIBN | Azobisisobutyronitrile |
AIE | Aggregation-induced emission |
CHEF | Chelation-enhanced fluorescence |
Cys | Cysteine |
CTBA | Cetrimonium bromide |
DBU | 1,8-Diazabicyclo[5.4.0]undec-7-ene |
DIEA | N,N-Diisopropylethylamine |
DMAP | 4-(Dimethylamino)pyridine |
EDTA | Ethylenediamine tetraacetic acid |
EHEC | Ethyl(hydroxyethyl)cellulose |
ESIPT | Excited state intramolecular proton transfer |
ESI-MS | Electrospray ionization–mass spectrometry |
FRET | Fluorescence resonance energy transfer |
FT-IR | Fourier-transform infrared spectroscopy |
GSH | Glutathione |
Hcy | Homocysteine |
HRMS | High-resolution mass spectrometry |
HSAB | Hard–soft acid base |
ICT | Intramolecular charge transfer |
JAF | J-aggregate formation (JAF) |
RIR | Intramolecular rotation restriction |
SBX | Silica-based xerogel |
LG | Logic gate |
MLCT | Metal-to-ligand charge transfer |
MLG | Molecular logic gates |
NIS | N-Iodosuccinimide |
NMR | Nuclear magnetic resonance spectroscopy |
NTA | 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dione |
PET | Photoinduced electron transfer |
ppb | Parts per billion |
ppm | Parts per million |
PPi | Pyrophosphate |
PS | Polymer matrix |
TBACl | Tetrabutylammonium chloride |
TFA | Trifluoroacetic acid |
TIPS | Triisopropyl silane |
References
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in Optical-Sensing Strategies for the on-Site Detection of Pesticides in Agricultural Foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Jiang, N.; Tansukawat, N.D.; Gonzalez-Macia, L.; Ates, H.C.; Dincer, C.; Güder, F.; Tasoglu, S.; Yetisen, A.K. Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sens. 2021, 6, 2108–2124. [Google Scholar] [CrossRef] [PubMed]
- Prodi, L. Luminescent Chemosensors: From Molecules to Nanoparticles. New J. Chem. 2005, 29, 20–31. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Khan, J. Synthesis and Applications of Fluorescent Chemosensors: A Review. J. Fluoresc. 2023. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. The IUPAC Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Williamson, A., Eds.; International Union of Pure and Applied Chemistry (IUPAC); Research Triangle Park, Blackwell Scientific Publications: Oxford, UK, 1997; Online Version (2019); ISBN 0-9678550-9-8. [Google Scholar]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef] [PubMed]
- Valeur, B.; Berberan-Santos, M.N.; Martin, M.M. Photophysics and Photochemistry of Supramolecular Systems. In Analytical Methods in Supramolecular Chemistry; Wiley: Hoboken, NJ, USA, 2007; pp. 220–264. [Google Scholar] [CrossRef]
- Anslyn, E.V. Supramolecular Analytical Chemistry. J. Org. Chem. 2007, 72, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, G. Analytical Supramolecular Chemistry: Colorimetric and Fluorimetric Chemosensors. J. Photochem. Photobiol. 2020, 42, 100340. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, N.H.Q.; McCoy, C.P. A Molecular Photoionic and Gate Based on Fluorescent Signalling. Nature 1993, 364, 42–44. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef]
- Hou, X.; Ga, L.; Zhang, X.; Ai, J. Advances in the Application of Logic Gates in Nanozymes. Anal. Bioanal. Chem. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Duadi, H.; Fleger, Y.; Fixler, D. Carbon Dots-Based Logic Gates. Nanomaterials 2021, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, P.; Ga, L.; Ai, J. Advances in Applications of Molecular Logic Gates. ACS Omega 2021, 6, 30189–30204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, L.; Yang, S.; Tang, X.; Chang, K.; Chen, M. Boolean Logic Gate Based on DNA Strand Displacement for Biosensing: Current and Emerging Strategies. Nanoscale Horiz. 2021, 6, 298–310. [Google Scholar] [CrossRef]
- Chen, K.; Shu, Q.; Schmittel, M. Design Strategies for Lab-on-a-Molecule Probes and Orthogonal Sensing. Chem. Soc. Rev. 2015, 44, 136–160. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, N.I.; Bakov, V.V.; Bojinov, V.B. A Tutorial Review on the Fluorescent Probes as a Molecular Logic Circuit—Digital Comparator. Molecules 2023, 28, 6327. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef]
- Clevenger, W.L.; Smith, B.W.; Winefordner, J.D. Trace Determination of Mercury: A Review. Crit. Rev. Anal. Chem. 1997, 27, 1–26. [Google Scholar] [CrossRef]
- Shuai, H.; Xiang, C.; Qian, L.; Bin, F.; Xiaohui, L.; Jipeng, D.; Chang, Z.; Jiahui, L.; Wenbin, Z. Fluorescent Sensors for Detection of Mercury: From Small Molecules to Nanoprobes. Dye. Pigment. 2021, 187, 109125. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Z.; Zeng, G.; Tang, L. Fluorescent and Colorimetric Sensors for Environmental Mercury Detection. Analyst 2015, 140, 5400–5443. [Google Scholar] [CrossRef]
- Gidlow, D.A. Lead Toxicity. Occup. Med. 2015, 65, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Godwin, H.A. The Biological Chemistry of Lead. Curr. Opin. Chem. Biol. 2001, 5, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.P. Lead Toxicity in a Newborn. J. Pediatr. Health Care 2011, 25, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.; Sheridan, A.; Sutherland, I.O.; Vincent, A. Selective Chromogenic Reagents for Lead. J. Chem. Soc. Chem. Commun. 1994, 22, 2627–2628. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Current Health Risk Assessment Practice for Dietary Cadmium: Data from Different Countries. Food Chem. Toxicol. 2017, 106, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Ikeda, Y.; MacHida, M.; Kayama, F. Dietary Exposure to Cadmium at Close to the Current Provisional Tolerable Weekly Intake Does Not Affect Renal Function among Female Japanese Farmers. Environ. Res. 2004, 95, 20–31. [Google Scholar] [CrossRef]
- Satarug, S.; Moore, M.R. Adverse Health Effects of Chronic Exposure to Low-Level Cadmium in Foodstuffs and Cigarette Smoke. Environ. Health Perspect. 2004, 112, 1099–1103. [Google Scholar] [CrossRef]
- Greger, J.L.; Sutherland, J.E.; Yokel, R. Aluminum Exposure and Metabolism. Crit. Rev. Clin. Lab. Sci. 1997, 34, 439–474. [Google Scholar] [CrossRef]
- Yokel, R.A.; Hicks, C.L.; Florence, R.L. Aluminum Bioavailability from Basic Sodium Aluminum Phosphate, an Approved Food Additive Emulsifying Agent, Incorporated in Cheese. Food Chem. Toxicol. 2008, 46, 2261–2266. [Google Scholar] [CrossRef]
- Zhou, J.; Wan, X.; Li, Y. Advanced Aluminium Products and Manufacturing Technologies Applied on Vehicles Presented at the EuroCarBody Conference. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 5015–5022. [Google Scholar]
- Campbell, A. The Potential Role of Aluminium in Alzheimer’s Disease. Nephrol. Dial. Transplant. 2002, 17, 17–20. [Google Scholar] [CrossRef]
- Darbre, P.D. Aluminium, Antiperspirants and Breast Cancer. J. Inorg. Biochem. 2005, 99, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Goyer, R.A.; Cherian, M.G. (Eds.) Toxicology of Metals: Biochemical Aspects; Springer: Berlin/Heidelberg, Germany, 1995; Volume 115, ISBN 9783642791642. [Google Scholar] [CrossRef]
- Leal, M.F.C.; Catarino, R.I.L.; Pimenta, A.M.; Souto, M.R.S. Roles of Metal Microelements in Neurodegenerative Diseases. Neurophysiology 2020, 52, 80–88. [Google Scholar]
- Sahu, M.; Manna, A.K.; Chowdhury, S.; Patra, G.K. A Novel Dihydro Phenylquinazolinone-Based Two-in-One Colourimetric Chemosensor for Nickel(II), Copper(II) and Its Copper Complex for the Fluorescent Colourimetric Nanomolar Detection of the Cyanide Anion. RSC Adv. 2020, 10, 44860–44875. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.M.; Jerrett, M. A Study of the Relationships between Parkinson’s Disease and Markers of Traffic-Derived and Environmental Manganese Air Pollution in Two Canadian Cities. Environ. Res. 2007, 104, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, E.B. Heavy Metals and the Etiology of Parkinson’s Disease and Other Movement Disorders. Toxicology 1995, 97, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental Pollutants as Risk Factors for Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Front. Cell. Neurosci. 2015, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Grattan, B.J.; Freake, H.C. Zinc and Cancer: Implications for LIV-1 in Breast Cancer. Nutrients 2012, 4, 648–675. [Google Scholar] [CrossRef] [PubMed]
- Sensi, S.L.; Paoletti, P.; Bush, A.I.; Sekler, I. Zinc in the Physiology and Pathology of the CNS. Nat. Rev. Neurosci. 2009, 10, 780–791. [Google Scholar] [CrossRef]
- Sadananda, D.; Mallikarjunaswamy, A.M.M.; Prashantha, C.N.; Mala, R.; Gouthami, K.; Lakshminarayana, L.; Ferreira, L.F.R.; Bilal, M.; Rahdar, A.; Mulla, S.I. Recent Development in Chemosensor Probes for the Detection and Imaging of Zinc Ions: A Systematic Review. Chem. Pap. 2022, 76, 5997–6015. [Google Scholar] [CrossRef]
- Xu, L.H.; Wang, W.Y.; Guo, J.J.; Qin, J.; Shi, D.Q.; Li, Y.L.; Xu, J. Zinc Improves Salt Tolerance by Increasing Reactive Oxygen Species Scavenging and Reducing Na+ Accumulation in Wheat Seedlings. Biol. Plant 2014, 58, 751–757. [Google Scholar] [CrossRef]
- Yu, Y.; Bogliotti, N.; Maisonneuve, S.; Tang, J.; Xie, J. Fluorescent Dyad for Cooperative Recognition of Copper Cation and Halogen Anion. Tetrahedron Lett. 2013, 54, 1877–1883. [Google Scholar] [CrossRef]
- Ruan, Y.B.; Maisonneuve, S.; Li, C.; Tang, J.; Xie, J. Cooperative Recognition of Cu2+ Based on Amino Acids Tethered Benzothiadiazoyl-Bistriazoles. Front. Chem. China 2010, 5, 208–213. [Google Scholar] [CrossRef]
- Padan, E.; Landau, M. Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. In The Alkali Metal Ions: Their Role for Life; Metal Ions in Life Sciences Series; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Cham, Switzerland, 2016; Volume 16, pp. 391–458. ISBN 978-3-319-21755-0. [Google Scholar] [CrossRef]
- Pohl, H.R.; Wheeler, J.S.; Murray, H.E. Sodium and Potassium in Health and Disease. In Interrelations between Essential Metal Ions and Human Diseases; Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; Volume 13, pp. 29–47. [Google Scholar] [CrossRef]
- Crossley, R.; Goolamali, Z.; Gosper, J.J.; Sammes, P.G. Synthesis and Spectral Properties of New Fluorescent Probes for Potassium. J. Chem. Soc. Perkin Trans. 1994, 2, 513–520. [Google Scholar] [CrossRef]
- Gao, G.; Cao, Y.; Liu, W.; Li, D.; Zhou, W.; Liu, J. Fluorescent Sensors for Sodium Ions. Anal. Methods 2017, 9, 5570–5579. [Google Scholar] [CrossRef]
- Jaitovich, A.; Bertorello, A.M. Intracellular Sodium Sensing: SIK1 Network, Hormone Action and High Blood Pressure. Biochim. Biophys. Acta 2010, 1802, 1140–1149. [Google Scholar] [CrossRef]
- Kofuji, P.; Newman, E.A. Potassium Buffering in the Central Nervous System. Neuroscience 2004, 129, 1043–1054. [Google Scholar] [CrossRef]
- Sprenger, T.; Schwarze, T.; Müller, H.; Sperlich, E.; Kelling, A.; Holdt, H.J.; Paul, J.; Martos Riaño, V.; Nazaré, M. BODIPY-Equipped Benzo-Crown-Ethers as Fluorescent Sensors for PH Independent Detection of Sodium and Potassium Ions. ChemPhotoChem 2023, 7, e20220027. [Google Scholar] [CrossRef]
- Chiu, T.C.; Huang, C.C. Aptamer-Functionalized Nano-Biosensors. Sensors 2009, 9, 10356–10388. [Google Scholar] [CrossRef]
- Pedersen, S.F.; O’donnell, M.E.; Anderson, S.E.; Cala, P.M. Physiology and Pathophysiology of Na/H Exchange and Na-K-2Cl Cotransport in the Heart, Brain, and Blood. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1–R25. [Google Scholar] [CrossRef]
- Gadsby, D.C.; Niedergerke, R.; Page, S. Do Intracellular Concentrations of Potassium or Sodium Regulate the Strength of the Heart Beat. Nature 1971, 232, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Liverani, L.; Boccardi, E.; Beltran, A.M.; Boccaccini, A.R. Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents. Polymers 2017, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Morad, M.; Davies, N.W.; Kaplan, J.H.; Lux, H.D. Inactivation and Block of Calcium Channels by Photo-Released Ca2+ in Dorsal Root Ganglion Neurons. Science 1988, 241, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.; Sutherland, I.O. A Chromogenic Reagent for Calcium. The Importance of Ion-Pairing in Cation Selection. J. Chem. Soc. Chem. Commun. 1994, 9, 1131–1132. [Google Scholar] [CrossRef]
- Way, J.L. Cyanide Intoxication and Its Mechanism of Antagonism. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451–481. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, F.P.; Fishbein, L.; World HealthOrganization & International Programme on Chemical Safety; Inter-Organization Programme for the Sound Management of Chemicals; World Health Organization. Hydrogen Cyanide and Cyanides: Human Health Aspects; World Health Organization: Geneva, Switzerland, 2004; ISBN 9241530618. [Google Scholar]
- Ballantyne, B. Acute Systemic Toxicity of Cyanides by Topical Application to the Eye. Cutan. Ocul. Toxicol. 1983, 2, 119–129. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Kim, H.N.; Yoon, J. Sensors for the Optical Detection of Cyanide Ion. Chem. Soc. Rev. 2010, 39, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Paul, S.; Roy, P.; Rayalu, S. Detection of Cyanide Ion by Chemosensing and Fluorosensing Technology. Inorg. Chem. Commun. 2021, 128, 108562. [Google Scholar] [CrossRef]
- Gai, L.; Mack, J.; Lu, H.; Nyokong, T.; Li, Z.; Kobayashi, N.; Shen, Z. Organosilicon Compounds as Fluorescent Chemosensors for Fluoride Anion Recognition. Coord. Chem. Rev. 2015, 285, 24–51. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Lin, Q.; Wei, T.B.; Wang, D.D.; Yao, H.; Wang, Y.L. Simple Colorimetric Sensors with High Selectivity for Acetate and Chloride in Aqueous Solution. Sens. Actuators B Chem. 2009, 137, 447–455. [Google Scholar] [CrossRef]
- Ho, T.Y.; Scranton, M.I.; Taylor, G.T.; Varela, R.; Thunell, R.C.; Muller-Karger, F. Acetate Cycling in the Water Column of the Cariaco Basin: Seasonal and Vertical Variability and Implication for Carbon Cycling. Limnol. Oceanogr. 2002, 47, 1119–1128. [Google Scholar] [CrossRef]
- Manju, S.; Jose, L.; Srinivasa Gopal, T.K.; Ravishankar, C.N.; Lalitha, K.V. Effects of Sodium Acetate Dip Treatment and Vacuum-Packaging on Chemical, Microbiological, Textural and Sensory Changes of Pearlspot (Etroplus suratensis) during Chill Storage. Food Chem. 2007, 102, 27–35. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Gupta, N. Colorimetric Sensor for Cyanide and Acetate Ion Using Novel Biologically Active Hydrazones. Sens. Actuators B Chem. 2014, 204, 125–135. [Google Scholar] [CrossRef]
- Han, M.S.; Kim, D.H. Naked-Eye Detection of Phosphate Ions in Water at Physiological PH: A Remarkably Selective and Easy-To-Assemble Colorimetric Phosphate-Sensing Probe. Angew. Chem. 2002, 2, 3963–3965. [Google Scholar] [CrossRef]
- Takeda, E.; Taketani, Y.; Sawada, N.; Sato, T.; Yamamoto, H. The Regulation and Function of Phosphate in the Human Body. BioFactors 2004, 21, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Mutihac, L.; Lee, J.H.; Kim, J.S.; Vicens, J. Chromogenic and Fluorogenic Chemosensors and Reagents for Anions. A Comprehensive Review of the Year 2009. Chem. Soc. Rev. 2011, 40, 2593–2643. [Google Scholar] [CrossRef]
- Figueroa, L.E.S.; Moragues, M.E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and Fluorogenic Chemosensors and Reagents for Anions. A Comprehensive Review of the Years 2010–2011. Chem. Soc. Rev. 2013, 42, 3489–3613. [Google Scholar] [CrossRef]
- Schmidtchen, F.P.; Berger, M. Artificial Organic Host Molecules for Anions. Chem. Rev. 1997, 97, 1609–1646. [Google Scholar] [CrossRef]
- Mohr, G.J. New Chromogenic and Fluorogenic Reagents and Sensors for Neutral and Ionic Analytes Based on Covalent Bond Formation—A Review of Recent Developments. Anal. Bioanal. Chem. 2006, 386, 1201–1214. [Google Scholar] [CrossRef]
- Al-Saidi, H.M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 54, 93–109. [Google Scholar] [CrossRef]
- Pu, L. Fluorescence of Organic Molecules in Chiral Recognition. Chem. Rev. 2004, 104, 1687–1716. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chae, P.S. Fluorescence Tunable Thiophene-Bis(Benzimidazole)-Based Probes for a Cascade Trace Detection of Hg2+ and Lysine: A Molecular Switch Mimic. Sens. Actuators B Chem. 2019, 281, 933–944. [Google Scholar] [CrossRef]
- Tavallali, H.; Espergham, O.; Deilamy-Rad, G.; Karimi, M.A.; Rostami, S.; Rouhani-Savestani, A.-R. Dye/Metal Ion-Based Chemosensing Ensemble towards L-Histidine and L-Lysine Determination in Water via Different Optical Responses. Anal. Biochem. 2020, 604, 113811. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.-Q.; Lv, G.-X. A NOR Fluorescent Logic Gate Based on N-(9-Anthracylmethyl)-L-Histidine. Acta. Phys. Chim. Sin. 2008, 24, 1902–1906. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, Z. Molecular Switch-Modulated Fluorescent Copper Nanoclusters for Selective and Sensitive Detection of Histidine and Cysteine. Anal. Bioanal. Chem. 2018, 410, 4991–4999. [Google Scholar] [CrossRef] [PubMed]
- Coucouvanis, D.; Rosa, D.; Pike, J. Recognition and transport of amphiphilic molecules by a new class of inorganic ditopic receptors. The synthesis of M-t Bu4-salphen-3n-cr-n complexes and their use (M = Mn,Fe, n = 6) in the transport of tryptophan and serotonin across bulk liquid membranes. Comptes Rendus Chim. 2003, 6, 317–327. [Google Scholar] [CrossRef]
- Körsten, S.; Mohr, G.J. Star-Shaped Tripodal Chemosensors for the Detection of Aliphatic Amines. Chem. Eur. J. 2011, 17, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Gräfe, A.; Haupt, K.; Mohr, G.J. Optical Sensor Materials for the Detection of Amines in Organic Solvents. Anal. Chim. Acta 2006, 565, 42–47. [Google Scholar] [CrossRef]
- Biji, K.B.; Ravishankar, C.N.; Venkateswarlu, R.; Mohan, C.O.; Gopal, T.K.S. Biogenic Amines in Seafood: A Review. J. Food Sci. Technol. 2016, 53, 2210–2218. [Google Scholar] [PubMed]
- Diauudin, F.N.; Rashid, J.I.A.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Kasim, N.A.M.; Abdul Halim, N.; Noor, S.A.M. A Review of Current Advances in the Detection of Organophosphorus Chemical Warfare Agents Based Biosensor Approaches. Sens. Biosens. Res. 2019, 26, 100305. [Google Scholar] [CrossRef]
- Gupta, N.K.; Pashigreva, A.; Pidko, E.A.; Hensen, E.J.M.; Mleczko, L.; Roggan, S.; Ember, E.E.; Lercher, J.A. Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angew. Chem. Int. Ed. 2016, 55, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, D.; Yoon, J. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene. ACS Sens. 2018, 3, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.J.; Frensdorff, H.K. Macrocyclic Polyethers and Their Complexes. Angew. Chem. Int. Ed. 1972, 11, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.J. Cyclic Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Lehn, J.M. Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules. Pure Appl. Chem. 1978, 50, 871–892. [Google Scholar] [CrossRef]
- Cram, D.J. Preorganization—From Solvents to Spherands. Angew. Chem. Int. Ed. 1986, 25, 1039–1057. [Google Scholar] [CrossRef]
- Lehn, J.-M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89–112. [Google Scholar] [CrossRef]
- Lehn, J.-M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 2007, 36, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.-M. Design of Organic Complexing Agents Strategies towards Properties. In Alkali Metal Complexes with Organic Ligands; Structure and Bonding Series; Springer: Berlin/Heidelberg, Germany, 2005; Volume 16, pp. 1–69. [Google Scholar] [CrossRef]
- Lehn, J.-M. Supramolecular Chemistry and Self-Assembly Special Feature: Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4763–4768. [Google Scholar] [CrossRef]
- Wang, Y.; Ping, G.; Li, C. Efficient Complexation between Pillar[5]Arenes and Neutral Guests: From Host-Guest Chemistry to Functional Materials. Chem. Comm. 2016, 52, 9858–9872. [Google Scholar] [CrossRef]
- Guohe, X.; Jie, L.; Jinni, D.; Lv, Y.; Zhaohui, Z.; Xiaobin, D. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli. Prog. Chem. 2015, 27, 1732–1742. [Google Scholar]
- Yeung, M.C.L.; Yam, V.W.W. Luminescent Cation Sensors: From Host-Guest Chemistry, Supramolecular Chemistry to Reaction-Based Mechanisms. Chem. Soc. Rev. 2015, 44, 4192–4202. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection: A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Rajasekar, M.; Ranjitha, V.; Rajasekar, K. Recent advances in Fluorescent-based cation sensors for biomedical applications. Results Chem. 2023, 5, 100850. [Google Scholar] [CrossRef]
- Magri, D.C. Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. Chemosensors 2018, 6, 48. [Google Scholar] [CrossRef]
- Zaccheroni, N.; Palomba, F.; Rampazzo, E. Luminescent Chemosensors: From Molecules to Nanostructures. In Applied Photochemistry: When Light Meets Molecules; Springer: Cham, Switzerland, 2016; pp. 479–497. ISBN 978-3-319-31671-0. [Google Scholar]
- Zimmermann-Dimer, L.; Machado, V. Chromogenic and Fluorogenic Chemosensors for Detection of Anionic Analites. Quim. Nova 2008, 31, 2134–2146. [Google Scholar] [CrossRef]
- Martínez-Máñez, R.; Sancenón, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003, 103, 4419–4476. [Google Scholar] [CrossRef]
- Daly, B.; Ling, J.; de Silva, A.P. Current Developments in Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches. Chem. Soc. Rev. 2015, 44, 4203–4211. [Google Scholar] [CrossRef]
- Escudero, D. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles. Acc. Chem. Res. 2016, 49, 1816–1824. [Google Scholar] [CrossRef]
- Misra, R.; Bhattacharyya, S.P. Intramolecular Charge Transfer: Theory and Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 978-3-527-34156-6. [Google Scholar]
- Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. FRET-Based Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications. Acc. Chem. Res. 2013, 46, 1462–1473. [Google Scholar]
- Zuo, Y.; Gou, Z.; Lan, Y.; Yan, M. Design Strategies of Logic Gate Sensors Based on FRET Mechanism. Trends Anal. Chem. 2023, 167, 117271. [Google Scholar] [CrossRef]
- Varadaraju, C.; Paulraj, M.S.; Tamilselvan, G.; Enoch, I.V.M.V.; Srinivasadesikan, V.; Shyi-Long, L. Evaluation of Metal Ion Sensing Behaviour of Fluorescent Probe along with Its Precursors: PET-CHEF Mechanism, Molecular Logic Gate Behaviour and DFT Studies. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 79–89. [Google Scholar] [CrossRef]
- Vlček, A., Jr. Mechanistic Roles of Metal-to-Ligand Charge-Transfer Excited States in Organometallic Photochemistry. Coord. Chem. Rev. 1998, 177, 219–256. [Google Scholar] [CrossRef]
- Park, J.-K.; Shin, J.; Jang, S.; Seol, M.-L.; Kang, J.; Choi, S.; Eom, H.; Kwon, O.; Park, S.; Noh, D.-Y.; et al. Rational Design of Fluorescent/Colorimetric Chemosensors for Detecting Transition Metal Ions by Varying Functional Groups. Inorganics 2022, 10, 189. [Google Scholar] [CrossRef]
- Han, D.Y.; Kim, J.M.; Kim, J.; Jung, H.S.; Lee, Y.H.; Zhang, J.F.; Kim, J.S. ESIPT-Based Anthraquinonylcalix[4]Crown Chemosensor for In3+. Tetrahedron Lett. 2010, 51, 1947–1951. [Google Scholar] [CrossRef]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef] [PubMed]
- Jayabharathi, J.; Thanikachalam, V.; Vennila, M.; Jayamoorthy, K. DFT Based ESIPT Process of Luminescent Chemosensor: Taft and Catalan Solvatochromism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 95, 589–595. [Google Scholar] [CrossRef]
- Paul, B.K.; Guchhait, N. Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Investigation of Intramolecular Hydrogen Bond Interaction and Excited-State Intramolecular Proton Transfer (ESIPT) Reaction in a Five-Membered Hydrogen-Bonding System 2-(1H-Pyrazol-5-Yl)Pyridine: On the Possibility of Solvent (Water)-Assisted ESPT. Comput. Theor. Chem. 2011, 972, 1–13. [Google Scholar] [CrossRef]
- Sakai, K.; Takemura, M.; Kawabe, Y. Lead Chloride-Based Layered Perovskite Incorporated with an Excited State Intramolecular Proton Transfer Dye. J. Lumin. 2010, 130, 2505–2507. [Google Scholar] [CrossRef]
- Qu, W.-J.; Yan, G.-T.; Ma, X.-L.; Wei, T.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M. “Cascade Recognition” of Cu2+ and H2PO4− with High Sensitivity and Selectivity in Aqueous Media Based on the Effect of ESIPT. Sens. Actuators B Chem. 2017, 242, 849–856. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines, 2nd ed.; Wiley: Mörlenbach, Germany, 2008; Volume 1, ISBN 9783527313846. [Google Scholar]
- Wang, H.; Zhao, E.; Lam, J.W.Y.; Tang, B.Z. AIE Luminogens: Emission Brightened by Aggregation. Mater. Today 2015, 18, 365–377. [Google Scholar] [CrossRef]
- Kolanowski, J.L.; Liu, F.; New, E.J. Fluorescent Probes for the Simultaneous Detection of Multiple Analytes in Biology. Chem. Soc. Rev. 2018, 47, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Hao, J.N.; Niu, D.; Li, Y. A Smart Luminescent Metal-Organic Framework-Based Logic System for Simultaneous Analysis of Copper Ions and Hydrogen Sulfide. J. Mater. Chem. C Mater. 2020, 8, 8635–8642. [Google Scholar] [CrossRef]
- Li, M.; Xu, X.; Cai, Q. DNA Polymerase/NEase-Assisted Signal Amplification Coupled with Silver Nanoclusters for Simultaneous Detection of Multiple MicroRNAs and Molecular Logic Operations. Sens. Actuators B Chem. 2021, 327, 128915. [Google Scholar] [CrossRef]
- de Silva, A.P.; McClenaghan, N.D. Simultaneously Multiply-Configurable or Superposed Molecular Logic Systems Composed of ICT (Internal Charge Transfer) Chromophores and Fluorophores Integrated with One- or Two-Ion Receptors. Chem. Eur. J. 2002, 8, 4935–4945. [Google Scholar] [CrossRef] [PubMed]
- Tavallali, H.; Parhami, A.; Karimi, M.A.; Hossein-Khezri, P. Simultaneous Detection of SO32− and PO43− Anions, in Aqueous Solutions Based on 4-(2-Pyridylazo) Resorcinol (PAR) as a Colorimetric Chemosensor and Analytical Applications. Int. J. Environ. Anal. Chem. 2020, 102, 3652–3671. [Google Scholar] [CrossRef]
- Valeur, B. Design Principles of Fluorescent Molecular Sensors for Cation Recognition. Coord. Chem. Rev. 2002, 205, 3–40. [Google Scholar] [CrossRef]
- Valeur, B. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; ISBN 3527600248. [Google Scholar]
- Tjandra, A.D.; Pham, A.-H.; Chandrawati, R. Polydiacetylene-Based Sensors to Detect Volatile Organic Compounds. Chem. Mater. 2022, 34, 2853–2876. [Google Scholar] [CrossRef]
- Qian, X.; Städler, B. Recent Developments in Polydiacetylene-Based Sensors. Chem. Mater. 2019, 31, 1196–1222. [Google Scholar] [CrossRef]
- Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Feng, J. A Novel Ratiometric Fluorescent Fe3+ Sensor Based on a Phenanthroimidazole Chromophore. Anal. Chim. Acta 2009, 634, 262–266. [Google Scholar] [CrossRef]
- Kuzu, B.; Tan, M.; Ekmekci, Z.; Menges, N. A Novel Fluorescent Sensor Based on Imidazole Derivative for Fe3+ Ions. J. Lumin. 2017, 192, 1096–1103. [Google Scholar] [CrossRef]
- Prakash, S.M.; Jayamoorthy, K.; Srinivasan, N.; Dhanalekshmi, K.I. Fluorescence Tuning of 2-(1H-Benzimidazol-2-Yl)Phenol-ESIPT Process. J. Lumin. 2016, 172, 304–308. [Google Scholar] [CrossRef]
- Horak, E.; Kassal, P.; Murković Steinberg, I. Benzimidazole as a Structural Unit in Fluorescent Chemical Sensors: The Hidden Properties of a Multifunctional Heterocyclic Scaffold. Supramol. Chem. 2018, 30, 838–857. [Google Scholar] [CrossRef]
- Gülle, S.; Çelik Erbaş, S. A Selective Fluorescence Sensor for Fe (III) Based on Phenanthroimidazole Imine Compound. J. Fluoresc. 2018, 28, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.G.; Rodrigues, M.O.; Paz, E.R.S.; Nunes, M.P.; Araujo, M.H.; Rodembusch, F.S.; Da Silva Júnior, E.N. Aryl-Phenanthro[9,10-d]Imidazole: A Versatile Scaffold for the Design of Optical-Based Sensors. ACS Sens. 2022, 7, 2865–2919. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.G.; Paz, E.R.S.; Nunes, M.P.; Carvalho, R.L.; Rodrigues, M.O.; Rodembusch, F.S.; Da Silva Júnior, E.N. Imidazoles and Oxazoles from Lapachones and Phenanthrene-9,10-Dione: A Journey through Their Synthesis, Biological Studies, and Optical Applications. Chem. Rec. 2021, 21, 2702–2738. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, F.S.; Dias, G.G.; de Freitas, R.P.; Santos, L.S.; de Lima, G.F.; Duarte, H.A.; de Simone, C.A.; Rezende, L.M.S.L.; Vianna, M.J.X.; Correa, J.R.; et al. Redox Center Modification of Lapachones towards the Synthesis of Nitrogen Heterocycles as Selective Fluorescent Mitochondrial Imaging Probes. Eur. J. Org. Chem. 2017, 2017, 3763–3773. [Google Scholar] [CrossRef]
- Dias, G.G.; Pinho, P.V.B.; Duarte, H.A.; Resende, J.M.; Rosa, A.B.B.; Correa, J.R.; Neto, B.A.D.; Da Silva Júnior, E.N. Fluorescent Oxazoles from Quinones for Bioimaging Applications. RSC Adv. 2016, 6, 76053–76063. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Z.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. A Quinoline-Based Fluorometric and Colorimetric Dual-Modal PH Probe and Its Application in Bioimaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 230–236. [Google Scholar] [CrossRef]
- Mikata, Y.; Nodomi, Y.; Kizu, A.; Konno, H. Quinoline-Attached Triazacyclononane (TACN) Derivatives as Fluorescent Zinc Sensors. Dalton Trans. 2014, 43, 1684–1690. [Google Scholar] [CrossRef]
- Paisuwan, W.; Rashatasakhon, P.; Ruangpornvisuti, V.; Sukwattanasinitt, M.; Ajavakom, A. Dipicolylamino Quinoline Derivative as Novel Dual Fluorescent Detecting System for Hg2+ and Fe3+. Sens. Biosens.Res. 2019, 24, 100283. [Google Scholar] [CrossRef]
- Ranee, S.J.; Sivaraman, G.; Pushpalatha, A.M.; Muthusubramanian, S. Quinoline Based Sensors for Bivalent Copper Ions in Living Cells. Sens. Actuators B Chem. 2018, 255, 630–637. [Google Scholar] [CrossRef]
- Loya, M.; Hazarika, S.I.; Pahari, P.; Atta, A.K. Fluorometric Detection of Cu2+ and Ni2+ by a Quinoline-Based Glucopyranose Derivative via the Excimer of Quinoline Subunit. J. Mol. Struct. 2021, 1241, 130634. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, M.; Zhao, J.; Wang, Y.; Zhang, Y. A Simple Salicylaldehyde-Bearing Pyrazine as a Turn-on Fluorescent Chemosensor for Al3+ and Zn2+ recognition and Its Applications. Rev. Anal. Chem. 2022, 41, 217–227. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.H.; So, Y.A.; Park, G.J.; Kim, C. Simultaneous Detection of F− and CN− by a Simple Colorimetric Chemosensor with High Selectivity. Bull. Korean Chem. Soc. 2015, 36, 1618–1624. [Google Scholar] [CrossRef]
- Chemate, S.; Erande, Y.; Mohbiya, D.; Sekar, N. Acridine Derivative as a “Turn on” Probe for Selective Detection of Picric Acid: Via PET Deterrence. RSC Adv. 2016, 6, 84319–84325. [Google Scholar] [CrossRef]
- Lee, S.C.; Park, S.; So, H.; Lee, G.; Kim, K.T.; Kim, C. An Acridine-Based Fluorescent Sensor for Monitoring ClO− in Water Samples and Zebrafish. Sensors 2020, 20, 4764. [Google Scholar] [CrossRef]
- Dai, Q.; Gao, C.; Liu, Y.; Liu, H.; Xiao, B.; Chen, C.; Chen, J.; Yuan, Z.; Jiang, Y. Highly Sensitive and Selective “Naked Eye” Sensing of Cu(II) by a Novel Acridine-Based Sensor Both in Aqueous Solution and on the Test Kit. Tetrahedron 2018, 74, 6459–6464. [Google Scholar] [CrossRef]
- Carlos, F.S.; da Silva, L.A.; Zanlorenzi, C.; Nunes, F.S. A Novel Macrocycle Acridine-Based Fluorescent Chemosensor for Selective Detection of Cd2+ in Brazilian Sugarcane Spirit and Tobacco Cigarette Smoke Extract. Inorg. Chim. Acta 2020, 508, 119634. [Google Scholar] [CrossRef]
- Carlos, F.S.; Monteiro, R.F.; da Silva, L.A.; Zanlorenzi, C.; Nunes, F.S. A Highly Selective Acridine-Based Fluorescent Probe for Detection of Al3+ in Alcoholic Beverage Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118119. [Google Scholar] [CrossRef]
- Nunes, M.C.; Carlos, F.S.; Fuganti, O.; Galindo, D.D.M.; de Boni, L.; Abate, G.; Nunes, F.S. Turn-on Fluorescence Study of a Highly Selective Acridine-Based Chemosensor for Zn2+ in Aqueous Solutions. Inorg. Chim. Acta 2020, 499, 119191. [Google Scholar] [CrossRef]
- Kim, D.; Yamamoto, K.; Ahn, K.H. A BODIPY-Based Reactive Probe for Ratiometric Fluorescence Sensing of Mercury Ions. Tetrahedron 2012, 68, 5279–5282. [Google Scholar] [CrossRef]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, K. Recent Advances in the Application of BODIPY in Bioimaging and Chemosensing. J. Mater. Chem. C Mater. 2019, 7, 11361–11405. [Google Scholar] [CrossRef]
- Wang, L.; Ding, H.; Ran, X.; Tang, H.; Cao, D. Recent Progress on Reaction-Based BODIPY Probes for Anion Detection. Dye. Pigment. 2020, 172, 107857. [Google Scholar] [CrossRef]
- Shi, W.J.; Huang, Y.; Liu, W.; Xu, D.; Chen, S.T.; Liu, F.; Hu, J.; Zheng, L.; Chen, K. A BODIPY-Based “OFF-ON” Fluorescent Probe for Fast and Selective Detection of Hypochlorite in Living Cells. Dye. Pigment. 2019, 170, 107566. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Y.; Shao, S. A BODIPY Based Fluorescent Chemosensor for Cu(II) Ions and Homocysteine/Cysteine. Sens. Actuators B Chem. 2012, 171–172, 872–877. [Google Scholar] [CrossRef]
- Elavarasan, K.; Saravanan, C.; Selvam, N.P.; Easwaramoorthi, S. Benzothiadiazole-Based Diarylamines as a Fluoride Sensor: Prevention of Fluoride Induced Decomposition of Receptor Molecule by Complex Formation with Cu2+. ChemistrySelect 2018, 3, 10085–10090. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Qu, W.; Zhong, X.; Liu, H.; Ren, J.; He, H.; Zhang, X.; Wang, S. Development of a Novel Benzothiadiazole-Based Fluorescent Turn-on Probe for Highly Selective Detection of Glutathione over Cysteine/Homocysteine. Sens. Actuators B Chem. 2018, 266, 528–533. [Google Scholar] [CrossRef]
- Lu, N.; Jiang, T.; Tan, H.; Hang, Y.; Yang, J.; Wang, J.; Qu, X.; Hua, J. A Red Fluorescent Turn-on Chemosensor for Al3+ Based on a Dimethoxy Triphenylamine Benzothiadiazole Derivative with Aggregation-Induced Emission. Anal. Methods 2017, 9, 2689–2695. [Google Scholar] [CrossRef]
- Qiu, C.Q.; Li, L.Q.; Yao, S.L.; Liu, S.J.; Xu, H.; Zheng, T.F. Two Benzothiadiazole-Based Compounds as Multifunctional Fluorescent Sensors for Detection of Organic Amines and Anions. Polyhedron 2021, 199, 115100. [Google Scholar] [CrossRef]
- Zhai, B.; Hu, Z.; Peng, C.; Liu, B.; Li, W.; Gao, C. Rational Design of a Colorimetric and Fluorescence Turn-on Chemosensor with Benzothiazolium Moiety for Cyanide Detection in Aqueous Solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117409. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; He, J.; Zhang, J.; Zhou, H.; Gao, C. A Novel Red-Emitting Fluorescent Probe for the Highly Selective Detection of Hg2+ Ion with AIE Mechanism. Chem. Phys. 2020, 539, 110944. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zuo, H.; Wang, C.; Shen, Y. A Novel Colorimetric and Fluorescent Sensor for Cyanide Anions Detection Based on Triphenylamine and Benzothiadiazole. Tetrahedron 2016, 72, 1244–1248. [Google Scholar] [CrossRef]
- Zhang, G.; Loch, A.S.; Kistemaker, J.C.M.; Burn, P.L.; Shaw, P.E. Dicyanovinyl-Based Fluorescent Sensors for Dual Mechanism Amine Sensing. J. Mater. Chem. C Mater. 2020, 8, 13723–13732. [Google Scholar] [CrossRef]
- Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef]
- Devendhiran, T.; Kumarasamy, K.; Lin, M.C.; Yang, Y.X. Synthesis and Physical Studies of Coumarin-Based Chemosensor for Cyanide Ions. Inorg. Chem. Commun. 2021, 134, 108951. [Google Scholar] [CrossRef]
- Sun, X.Y.; Liu, T.; Sun, J.; Wang, X.J. Synthesis and Application of Coumarin Fluorescence Probes. RSC Adv. 2020, 10, 10826–10847. [Google Scholar] [CrossRef] [PubMed]
- Janeková, H.; Gašpar, J.; Gáplovský, A.; Stankovičová, H. Selective Fluoride Chemosensors Based on Coumarin Semicarbazones. J. Photochem. Photobiol. A Chem. 2021, 410, 113168. [Google Scholar] [CrossRef]
- Şenol, A.M.; Onganer, Y.; Meral, K. An Unusual “off-on” Fluorescence Sensor for Iron(III) Detection Based on Fluorescein–Reduced Graphene Oxide Functionalized with Polyethyleneimine. Sens. Actuators B Chem. 2017, 239, 343–351. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Wang, R.; Wang, B.; Chang, H.; Chen, J.; Yang, G.; He, H. Fluorescein-Based Fluorescent Sensor with High Selectivity for Mercury and Its Imaging in Living Cells. Inorg. Chem. Commun. 2018, 89, 46–50. [Google Scholar] [CrossRef]
- Keerthana, S.; Sam, B.; George, L.; Sudhakar, Y.N.; Varghese, A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J. Fluoresc. 2021, 31, 1251–1276. [Google Scholar] [CrossRef] [PubMed]
- Rathod, R.V.; Bera, S.; Maity, P.; Mondal, D. Mechanochemical Synthesis of a Fluorescein-Based Sensor for the Selective Detection and Removal of Hg2+ Ions in Industrial Effluents. ACS Omega 2020, 5, 4982–4990. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, M. Recent Development in Fluorescein Derivatives. J. Mol. Struct. 2021, 1224, 129085. [Google Scholar] [CrossRef]
- Das, B.; Jana, A.; Das Mahapatra, A.; Chattopadhyay, D.; Dhara, A.; Mabhai, S.; Dey, S. Fluorescein Derived Schiff Base as Fluorimetric Zinc (II) Sensor via ‘Turn on’ Response and Its Application in Live Cell Imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Feng, J.; Wang, Y.; Dong, C.; Shuang, S.; Wang, Y. Single Fluorescein-Based Probe for Selective Colorimetric and Fluorometric Dual Sensing of Al3+ and Cu2+. Sens. Actuators B Chem. 2017, 247, 451–460. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, X.; Zhou, L.; He, H.; Zhou, P.; Duan, C.; Peng, X. A Fluorescein Derivative-Based Fluorescent Sensor for Selective Recognition of Copper(II) Ions. J. Photochem. Photobiol. A Chem. 2018, 355, 67–71. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, C.Y.; Liu, J.; Dong, D. Recent Developments in Rhodamine Salicylidene Hydrazone Chemosensors. Anal. Methods 2016, 8, 2863–2871. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Gao, Q.; Wei, J.; Duan, C.; Peng, X. A Novel Rhodamine B-Based “off-on’’ Fluorescent Sensor for Selective Recognition of Copper (II) Ions. Talanta 2018, 184, 143–148. [Google Scholar] [CrossRef]
- Majumdar, A.; Lim, C.S.; Kim, H.M.; Ghosh, K. New Six-Membered PH-Insensitive Rhodamine Spirocycle in Selective Sensing of Cu2+ through C-C Bond Cleavage and Its Application in Cell Imaging. ACS Omega 2017, 2, 8167–8176. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, E.; Ding, P.; Tang, J.; Zhang, D.; Zhao, Y.; Ye, Y. Two Rhodamine Based Chemosensors for Sn4+ and the Application in Living Cells. Sens. Actuators B Chem. 2015, 221, 688–693. [Google Scholar] [CrossRef]
- Arumugaperumal, R.; Srinivasadesikan, V.; Lin, M.C.; Shellaiah, M.; Shukla, T.; Lin, H.C. Facile Rhodamine-Based Colorimetric Sensors for Sequential Detections of Cu(II) Ions and Pyrophosphate (P2O74−) Anions. RSC Adv. 2016, 6, 106631–106640. [Google Scholar] [CrossRef]
- Mwalupindi, A. Influence of Organized Media on the Absorption and Fluorescence Spectra of Auramine-O Dye. Talanta 1994, 41, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Sabnis, R.W. Handbook of Biological Dyes and Stains—Synthesis and Industrial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Poulios, I.; Avranas, A.; Rekliti, E.; Zouboulis, A. Photocatalytic Oxidation of Auramine O in the Presence of Semiconducting Oxides. J. Chem. Technol. Biotechnol. 2000, 75, 205–212. [Google Scholar] [CrossRef]
- Magde, D.; Rojas, G.E.; Seybold, P.G. Solvent Dependence of the Fluorescence Lifetimes of Xanthene Dyes. Photochem. Photobiol. 1999, 70, 737–744. [Google Scholar] [CrossRef]
- Shabir, G.; Saeed, A.; Ali Channar, P. A Review on the Recent Trends in Synthetic Strategies and Applications of Xanthene Dyes. Mini Rev. Org. Chem. 2018, 15, 166–197. [Google Scholar] [CrossRef]
- Padghan, S.D.; Wang, C.Y.; Liu, W.C.; Sun, S.S.; Liu, K.M.; Chen, K.Y. A Naphthalene-Based Colorimetric and Fluorometric Dual-Channel Chemodosimeter for Sensing Cyanide in a Wide PH Range. Dye. Pigment. 2020, 183, 108724. [Google Scholar] [CrossRef]
- Muniyasamy, H.; Chinnadurai, C.; Nelson, M.; Chinnamadhaiyan, M.; Ayyanar, S. Triazole-Naphthalene Based Fluorescent Chemosensor for Highly Selective Naked Eye Detection of Carbonate Ion and Real Sample Analyses. Inorg. Chem. Commun. 2021, 133, 108883. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Jin, S.; Zhang, Y.; Chen, X.; Zhang, Z.; Shu, Q. Naphthalene Based Lab-on-a-Molecule for Fluorimetric and Colorimetric Sensing of F− and CN− and Nitroaromatic Explosives. Sens. Actuators B Chem. 2017, 242, 994–998. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.; Gu, W.; Cheng, T.; Wang, B.; Jiang, Y.; Shen, J. A Novel Naphthalene-Based Fluorescent Probe for Highly Selective Detection of Cysteine with a Large Stokes Shift and Its Application in Bioimaging. New J. Chem. 2018, 42, 18109–18116. [Google Scholar] [CrossRef]
- Xiao, N.; Zhang, C. Selective Monitoring of Cu(II) with a Fluorescence–on Naphthalene–Based Probe in Aqueous Solution. Inorg. Chem. Commun. 2019, 107, 107467. [Google Scholar] [CrossRef]
- Attia, G.; Rahali, S.; Teka, S.; Fourati, N.; Zerrouki, C.; Seydou, M.; Chehimi, S.; Hayouni, S.; Mbakidi, J.P.; Bouquillon, S.; et al. Anthracene Based Surface Acoustic Wave Sensors for Picomolar Detection of Lead Ions. Correlation between Experimental Results and DFT Calculations. Sens. Actuators B Chem. 2018, 276, 349–355. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, B. Recent Development in Anthracene Possessing Chemosensors for Cations and Anions. Microchem. J. 2020, 158, 105131. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, A.; Kaur, N. A Novel, Anthracene-Based Naked Eye Probe for Detecting Hg2+ Ions in Aqueous as Well as Solid State Media. Microchem. J. 2020, 153, 104508. [Google Scholar] [CrossRef]
- Prusti, B.; Chakravarty, M. Electron-Rich Anthracene-Based Twisted π-System as a Highly Fluorescent Dye: Easy Recognition of Solvents and Volatile Organic Compounds. Dye. Pigment. 2020, 181, 108543. [Google Scholar] [CrossRef]
- Tümay, S.O.; Irani-nezhad, M.H.; Khataee, A. Development of Dipodal Fluorescence Sensor of Iron for Real Samples Based on Pyrene Modified Anthracene. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120017. [Google Scholar] [CrossRef] [PubMed]
- Kathiravan, A.; Gowri, A.; Khamrang, T.; Kumar, M.D.; Dhenadhayalan, N.; Lin, K.C.; Velusamy, M.; Jaccob, M. Pyrene-Based Chemosensor for Picric Acid—Fundamentals to Smartphone Device Design. Anal. Chem. 2019, 91, 13244–13250. [Google Scholar] [CrossRef]
- Ghorai, A.; Mondal, J.; Manna, A.K.; Chowdhury, S.; Patra, G.K. A Novel Pyrene Based Highly Selective Reversible Fluorescent-Colorimetric Sensor for the Rapid Detection of Cu2+ Ions: Application in Bio-Imaging. Anal. Methods 2018, 10, 1063–1073. [Google Scholar] [CrossRef]
- Kowser, Z.; Rayhan, U.; Akther, T.; Redshaw, C.; Yamato, T. A Brief Review on Novel Pyrene Based Fluorometric and Colorimetric Chemosensors for the Detection of Cu2+. Mater. Chem. Front. 2021, 5, 2173–2200. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, F.; Chen, Y.; Yang, X.; Wei, T.; Liu, C.; Chen, S.; Xu, Z.; Yoon, J.; Chen, X. Pyrene-Based Bisboronic Sensors for Multichannel Enantioselective Recognition of Tartaric Acid. Dye. Pigment. 2019, 163, 227–231. [Google Scholar] [CrossRef]
- de Moliner, F.; Kielland, N.; Lavilla, R.; Vendrell, M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew. Chem. 2017, 56, 3758–3769. [Google Scholar] [CrossRef]
- Carvalho, R.L.; Dias, G.G.; Pereira, C.L.M.; Ghosh, P.; Maiti, D.; Da Silva, E.N. A Catalysis Guide Focusing on C-H Activation Processes. J. Braz. Chem. Soc. 2021, 32, 917–952. [Google Scholar] [CrossRef]
- Machado, L.A.; Paz, E.R.S.; Araujo, M.H.; Almeida, L.D.; Bozzi, Í.A.O.; Dias, G.G.; Pereira, C.L.M.; Pedrosa, L.F.; Fantuzzi, F.; Martins, F.T.; et al. Ruthenium(II)-Catalyzed C−H/N−H Alkyne Annulation of Nonsymmetric Imidazoles: Mechanistic Insights by Computation and Photophysical Properties. Eur. J. Org. Chem. 2022, 2022, e202200590. [Google Scholar] [CrossRef]
- Dias, G.G.; Paz, E.R.S.; Kadooca, J.Y.; Sabino, A.A.; Cury, L.A.; Torikai, K.; De Simone, C.A.; Fantuzzi, F.; Da Silva Júnior, E.N. Rhodium(III)-Catalyzed C-H/N-H Alkyne Annulation of Nonsymmetric 2-Aryl (Benz)Imidazole Derivatives: Photophysical and Mechanistic Insights. J. Org. Chem. 2021, 86, 264–278. [Google Scholar] [CrossRef]
- Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-Systems through C-H Activation. Ang. Chem. 2015, 54, 66–81. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Hu, R.; Liu, C.; Bartholome, T.A.; Ge, H.; Li, B. Transition-Metal-Catalyzed C-C Bond-Forming Reactions via C-H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal. 2022, 12, 2796–2820. [Google Scholar] [CrossRef]
- Li, B.; Ali, A.I.M.; Ge, H. Recent Advances in Using Transition-Metal-Catalyzed C–H Functionalization to Build Fluorescent Materials. Chem 2020, 6, 2591–2657. [Google Scholar] [CrossRef]
- Ushakov, E.N.; Alfimov, M.V.; Gromov, S.P. Crown Ether-Based Optical Molecular Sensors and Photocontrolled Ionophores. Macroheterocycles 2010, 3, 189–200. [Google Scholar] [CrossRef]
- Gokel, G.W.; Leevy, W.M.; Weber, M.E. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev. 2004, 104, 2723–2750. [Google Scholar] [CrossRef]
- Shahgaldian, P.; Pieles, U. Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing. Sensors 2006, 6, 593–615. [Google Scholar] [CrossRef]
- Zhu, G.; Yi, Y.; Chen, J. Recent Advances for Cyclodextrin-Based Materials in Electrochemical Sensing. Trends Anal. Chem. 2016, 80, 232–241. [Google Scholar] [CrossRef]
- Niu, X.; Mo, Z.; Yang, X.; Sun, M.; Zhao, P.; Li, Z.; Ouyang, M.; Liu, Z.; Gao, H.; Guo, R.; et al. Advances in the Use of Functional Composites of β-Cyclodextrin in Electrochemical Sensors. Mikrochim. Acta 2018, 185, 328. [Google Scholar] [CrossRef]
- Ogoshi, T.; Harada, A. Chemical Sensors Based on Cyclodextrin Derivatives. Sensors 2008, 8, 4961–4982. [Google Scholar] [CrossRef]
- Sayed, M. Unraveling PH-Responsive Contrasting Supramolecular Interaction of Acridine Orange with γ-Cyclodextrin. J. Mol. Struct. 2022, 1261, 132863. [Google Scholar] [CrossRef]
- Prasad, N.; Shelar, S.; Sayed, M. PH Tolerant Metal Ion Controlled Luminescence Behaviour of Supramolecular Assembly and Its Application in Bioimaging and Supramolecular Logic Gate. J. Mol. Liq. 2023, 369, 120834. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.Y.; Kim, S.K.; Lee, J.H.; Kim, J.S. Pyrene-Appended Calix[4]Crowned Logic Gates Involving Normal and Reverse PET: NOR, XNOR and INHIBIT. Tetrahedron 2004, 60, 5171–5176. [Google Scholar] [CrossRef]
- Zhu, L.-N.; Gong, S.-L.; Gong, S.-L.; Yang, C.-L.; Qin, J.-G. Novel Pyrene-Armed Calix[4]Arenes through Triazole Connection: Ratiometric Fluorescent Chemosensor for Zn2+ and Promising Structure for Integrated Logic Gates. Chin. J. Chem. 2008, 26, 1424–1430. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef]
- Leray, I.; Valeur, B. Calixarene-Based Fluorescent Molecular Sensors for Toxic Metals. Eur. J. Inorg. Chem. 2009, 2009, 3525–3535. [Google Scholar] [CrossRef]
- Mei, C.J.; Ahmad, S.A.A. A Review on the Determination Heavy Metals Ions Using Calixarene-Based Electrochemical Sensors. Arab. J. Chem. 2021, 14, 103303. [Google Scholar] [CrossRef]
- Helttunen, K. Anion Responsive Molecular Switch Based on a Doubly Strapped Calix[4]Pyrrole. Eur. J. Org. Chem. 2022, 2022, e202200647. [Google Scholar] [CrossRef]
- Peng, S.; He, Q.; Vargas-Zúñiga, G.I.; Qin, L.; Hwang, I.; Kim, S.K.; Heo, N.J.; Lee, C.-H.; Dutta, R.; Sessler, J.L. Strapped Calix[4]Pyrroles: From Syntheses to Applications. Chem. Soc. Rev. 2020, 49, 865–907. [Google Scholar] [CrossRef]
- Lai, Z.; Zhao, T.; Sessler, J.L.; He, Q. Bis–Calix[4]Pyrroles: Preparation, Structure, Complexation Properties and Beyond. Coord. Chem. Rev. 2020, 425, 213528. [Google Scholar] [CrossRef]
- Wagay, S.A.; Rather, I.A.; Ali, R. Functionalized Calix[4]Pyrroles: Emerging Class of Ion-Pair Receptors in Supramolecular Chemistry. Mater. Today Proc. 2021, 36, 657–678. [Google Scholar] [CrossRef]
- Atwood, J.L.; Steed, J.W. Supramolecular Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0824747240. [Google Scholar]
- Mohr, G.J. Chromo- and Fluororeactands: Indicators for Detection of Neutral Analytes by Using Reversible Covalent-Bond Chemistry. Chem. Eur. J. 2004, 10, 1082–1090. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, J.N.; Kim, Y.C. Solid State Solvation Effect of a Donor–Acceptor Type Fluorescent Molecule and Its Application to White Organic Light-Emitting Diodes. Curr. Appl. Phys. 2015, 15, S42–S47. [Google Scholar] [CrossRef]
- Madhu, M.; Ramakrishnan, R.; Vijay, V.; Hariharan, M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor–Acceptor Conjugates. Chem. Rev. 2021, 121, 8234–8284. [Google Scholar] [CrossRef]
- Morokuma, K. Why Do Molecules Interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding and Proton Affinity. Acc. Chem. Res. 1977, 10, 294–300. [Google Scholar] [CrossRef]
- Pond, S.J.K.; Tsutsumi, O.; Rumi, M.; Kwon, O.; Zojer, E.; Brédas, J.L.; Marder, S.R.; Perry, J.W. Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections: Aza-Crown Ether Substituted Donor-Acceptor-Donor Distyrylbenzenes. J. Am. Chem. Soc. 2004, 126, 9291–9306. [Google Scholar] [CrossRef]
- Mei, X.; Wen, G.; Wang, J.; Yao, H.; Zhao, Y.; Lin, Z.; Ling, Q. A Λ-Shaped Donor–π–Acceptor–π–Donor Molecule with AIEE and CIEE Activity and Sequential Logic Gate Behaviour. J. Mater. Chem. C Mater. 2015, 3, 7267–7271. [Google Scholar] [CrossRef]
- Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor-Donor-Acceptor Type Molecules for High Performance Organic Photovoltaics-Chemistry and Mechanism. Chem. Soc. Rev. 2020, 49, 2828. [Google Scholar] [CrossRef]
- Sharma, H.; Kakkar, R.; Bishnoi, S.; Milton, M.D. Synthesis of Acceptor-Donor-Acceptor Based Phenothiazine-5-Oxide Aldehydes Displaying Large Stokes Shift- “on-off-on” Acidofluorochromic Switch and Molecular Logic Gate Operation. J. Photochem. Photobiol. A Chem. 2022, 430, 113944. [Google Scholar] [CrossRef]
- Wen, P.; Gao, Z.; Zhang, R.; Li, A.; Zhang, F.; Li, J.; Xie, J.; Wu, Y.; Wu, M.; Guo, K. A–π–D–π–A Carbazole Derivatives with Remarkable Solvatochromism and Mechanoresponsive Luminescence Turn-On. J. Mater. Chem. C Mater. 2017, 5, 6136–6143. [Google Scholar] [CrossRef]
- Török, B.; Schäfer, C.; Kokel, A. Multicomponent Reactions. In Heterogeneous Catalysis in Sustainable Synthesis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 443–489. ISBN 9780128178263. [Google Scholar]
- Heravi, M.; Zadsirjan, V. Synthesis of Heterocycles via MCRs, Using a Name Reaction in Combination with Another Reaction. In Recent Advances in Applications of Name Reactions in Multicomponent Reactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 139–268. ISBN 978-0-12-818584-1. [Google Scholar]
- Affeldt, R.F.; De Amorim Borges, A.C.; Russowsky, D.; Severo Rodembusch, F. Synthesis and Fluorescence Properties of Benzoxazole-1,4-Dihydropyridine Dyads Achieved by a Multicomponent Reaction. New J. Chem. 2014, 38, 4607–4614. [Google Scholar] [CrossRef]
- Burchak, O.N.; Mugherli, L.; Ostuni, M.; Lacapère, J.J.; Balakirev, M.Y. Combinatorial Discovery of Fluorescent Pharmacophores by Multicomponent Reactions in Droplet Arrays. J. Am. Chem. Soc. 2011, 133, 10058–10061. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.O.; Rodrigues, M.O.; Neto, B.A.D. Review on the Ugi Multicomponent Reaction Mechanism and the Use of Fluorescent Derivatives as Functional Chromophores. ACS Omega 2020, 5, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Romero, A.; Kielland, N.; Arévalo, M.J.; Preciado, S.; Mellanby, R.J.; Feng, Y.; Lavilla, R.; Vendrell, M. Multicomponent Reactions for de Novo Synthesis of Bodipy Probes: In Vivo Imaging of Phagocytic Macrophages. J. Am. Chem. Soc. 2013, 135, 16018–16021. [Google Scholar] [CrossRef]
- Ahmed, F.; Xiong, H. Recent Developments in 1,2,3-Triazole-Based Chemosensors. Dye. Pigment. 2021, 185, 108905. [Google Scholar] [CrossRef]
- Singh, G.; George, N.; Singh, R.; Singh, G.; Sushma; Kaur, G.; Singh, H.; Singh, J. Ion Recognition by 1,2,3-Triazole Moieties Synthesized via “Click Chemistry”. Appl. Organomet. Chem. 2023, 37, e6897. [Google Scholar] [CrossRef]
- Lau, Y.H.; Rutledge, P.J.; Watkinson, M.; Todd, M.H. Chemical Sensors That Incorporate Click-Derived Triazoles. Chem. Soc. Rev. 2011, 40, 2848–2866. [Google Scholar] [CrossRef]
- Bryant, J.J.; Bunz, U.H.F. Click to Bind: Metal Sensors. Chem. Asian J. 2013, 8, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Atkinson, A.; Gibson, J.; Subbaiahgari, H.; Ming, W.; Padgett, C.; Aiken, K.S.; Landge, S.M. 1,2,3-Triazoles: Controlled Switches in Logic Gate Applications. Sensors 2023, 23, 7000. [Google Scholar] [CrossRef] [PubMed]
- Boiocchi, M.; Del Boca, L.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Anion-Induced Urea Deprotonation. Chem. Eur. J. 2005, 11, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Sengupta, A.; Chattopadhyay, A.; Das, D. A Single Probe for Sensing Both Acetate and Aluminum(Iii): Visible Region Detection, Red Fluorescence and Human Breast Cancer Cell Imaging. RSC Adv. 2015, 5, 24194–24199. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Anslyn, E.V. Indicator-Displacement Assays. Coord. Chem. Rev. 2006, 250, 3118–3127. [Google Scholar] [CrossRef]
- Mawai, K.; Nathani, S.; Roy, P.; Singh, U.P.; Ghosh, K. Combined Experimental and Theoretical Studies on Selective Sensing of Zinc and Pyrophosphate Ions by Rational Design of Compartmental Chemosensor Probe: Dual Sensing Behaviour: Via Secondary Recognition Approach and Cell Imaging Studies. Dalton Trans. 2018, 47, 6421–6434. [Google Scholar] [CrossRef] [PubMed]
- Nedeljko, P.; Turel, M.; Lobnik, A. Hybrid Sol-Gel Based Sensor Layers for Optical Determination of Biogenic Amines. Sens. Actuators B Chem. 2017, 246, 1066–1073. [Google Scholar] [CrossRef]
- Buske, J.L.O.; Nicoleti, C.R.; Cavallaro, A.A.; Machado, V.G. 4-(Pyren-1-Ylimino)Methylphenol and Its Silylated Derivative as Chromogenic Chemosensors Highly Selective for Fluoride or Cyanide. J. Braz. Chem. Soc. 2015, 26, 2507–2519. [Google Scholar] [CrossRef]
- Nandi, L.G.; Nicoleti, C.R.; Marini, V.G.; Bellettini, I.C.; Valandro, S.R.; Cavalheiro, C.C.S.; Machado, V.G. Optical Devices for the Detection of Cyanide in Water Based on Ethyl(Hydroxyethyl)Cellulose Functionalized with Perichromic Dyes. Carbohydr. Polym. 2017, 157, 1548–1556. [Google Scholar] [CrossRef]
- Nicoleti, C.R.; Garcia, D.N.; Da Silva, L.E.; Begnini, I.M.; Rebelo, R.A.; Joussef, A.C.; Machado, V.G. Synthesis of 1,8-Naphthyridines and Their Application in the Development of Anionic Fluorogenic Chemosensors. J. Fluoresc. 2012, 22, 1033–1046. [Google Scholar] [CrossRef]
- Bhaumik, C.; Maity, D.; Das, S.; Baitalik, S. Synthesis, structural characterization, solvatochromism, and ion-binding studies of a ditopic receptor based on 2-(4-[2,2′: 6′,2′′]terpyridin-4′-yl-phenyl)-1H-phenanthro[9,10-d] imidazole (tpy-HImzphen) unit. RSC Adv. 2012, 2, 2581–2594. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, M.J.; Ahn, M.; Lee, K.M.; Wee, K.R. Systematic Energy Band Gap Control of Pyrene Based Donor-Acceptor-Donor Molecules for Efficient Chemosensor. Dye. Pigment. 2021, 191, 109362. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent Chemodosimeters for Bioimaging. Chem. Rev. 2013, 113, 192–270. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.T.; Kim, J.S. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280–6301. [Google Scholar] [CrossRef] [PubMed]
- Souto, F.T.; Buske, J.L.d.O.; Nicoleti, C.R.; Dreyer, J.P.; Heying, R.d.S.; Bortoluzzi, A.J.; Machado, V.G. Chromogenic Chemodosimeter Based on a Silylated Azo Compound Detects Cyanide in Water and Cassava. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119950. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bai, W.; Bao, Y. Fluorescent Chemodosimeters for Fluoride Ions via Silicon-Fluorine Chemistry: 20 Years of Progress. J. Mater. Chem. C Mater. 2019, 7, 11731–11746. [Google Scholar] [CrossRef]
- Du, J.; Sheng, C.; Wang, Y.; Zhang, H.; Jiang, K. Determination of Trace Fluoride in Water Samples by Silylation and Gas Chromatography/Mass Spectrometry Analysis. Rapid Commun. Mass. Spectrom. 2021, 35, e9089. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, Y.; Zheng, J.; Li, J.; Zhao, W.; Yang, S.; Yang, R. Self-Assembly of Graphene Oxide with a Silyl-Appended Spiropyran Dye for Rapid and Sensitive Colorimetric Detection of Fluoride Ions. Anal. Chem. 2013, 85, 11456–11463. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ruiz, A.; González-Alfaro, S.; García-Martínez, J.C.; Rodríguez-López, J. A Study of Silylated Tris(Styryl)Benzenes as Potential Fluorescent Sensors for Aqueous Fluoride. Dye. Pigment. 2020, 182, 108610. [Google Scholar] [CrossRef]
- Mahapatra, A.K.; Mondal, S.; Manna, S.K.; Maiti, K.; Maji, R.; Ali, S.S.; Mandal, D.; Uddin, M.R.; Mandal, S. Reaction-Based Sensing of Fluoride Ions Using Desilylation Method for Triggering Excited-State Intramolecular Proton Transfer. Supramol. Chem. 2016, 28, 693–706. [Google Scholar] [CrossRef]
- Nicoleti, C.R.; Nandi, L.G.; Ciancaleoni, G.; Machado, V.G. Spectrometric and Kinetics Studies Involving Anionic Chromogenic Chemodosimeters Based on Silylated Imines in Acetonitrile or Acetonitrile-Water Mixtures. RSC Adv. 2016, 6, 101853–101861. [Google Scholar] [CrossRef]
- Song, I.H.; Yeom, G.S.; Kuwar, A.; Nimse, S.B. Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis. Biosensors 2022, 12, 224. [Google Scholar]
- Collier, C.P.; Wong, E.W.; Belohradský, M.; Raymo, F.M.; Stoddart, J.F.; Kuekes, P.J.; Williams, R.S.; Heath, J.R. Electronically Configurable Molecular-Based Logic Gates. Science 1999, 285, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Ashkenasy, G. Systems Chemistry: Logic Gates, Arithmetic Units, and Network Motifs in Small Networks. Chem. Eur. J. 2009, 15, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Ecik, E.T.; Atilgan, A.; Guliyev, R.; Uyar, T.B.; Gumus, A.; Akkaya, E.U. Modular Logic Gates: Cascading Independent Logic Gates via Metal Ion Signals. Dalton Trans. 2014, 43, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C.; de Silva, A.P. From PASS 1 to YES to AND Logic: Building Parallel Processing into Molecular Logic Gates by Sequential Addition of Receptors. New J. Chem. 2010, 34, 476–481. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A.C.; Gunnlaugsson, T.; James, T.D.; Yoon, J.; Akkaya, E.U. Molecular Logic Gates: The Past, Present and Future. Chem. Soc. Rev. 2018, 47, 2228–2248. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. The Bottom-up Approach to Molecular-Level Devices and Machines. Chem. Eur. J. 2002, 8, 5524–5532. [Google Scholar] [CrossRef]
- de Silva, A.P. Molecular Logic-Based Computation, 1st ed.; RSC Publishing: Cambridge, UK, 2012; ISBN 9781849731485. [Google Scholar]
- de Silva, A.P.; Uchiyama, S. Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer. In Luminescence Applied in Sensor Science; Prodi, L., Montalti, M., Zaccheroni, N., Eds.; Springer Science & Business Media: Berlin, Germany, 2010; Volume 300, pp. 1–28. [Google Scholar] [CrossRef]
- Souto, F.T.; Dias, G.G. Input Selection Drives Molecular Logic Gate Design. Analytica 2023, 4, 456–499. [Google Scholar] [CrossRef]
- Daly, B.; Silverson, V.A.D.; Yao, C.Y.; Chen, Z.Q.; de Silva, A.P. Molecular Logic Gates as Fluorescent Sensors, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, ISBN 9780128031988. [Google Scholar]
- Budyka, M.F. Design Principles and Action of Molecular Logic Gates. Russ. Chem. Bull. 2015, 63, 1656–1665. [Google Scholar] [CrossRef]
- Dhir, A.; Bhalla, V.; Kumar, M. Ratiometry of Monomer/Excimer Emissions of Dipyrenyl Thiacalix[4]Arene for Cu2+ Detection: A Potential Cu2+ and K+ Switched INHIBIT Logic Gate with NOT and YES Logic Functions. Tetrahedron Lett. 2008, 49, 4227–4230. [Google Scholar] [CrossRef]
- Torawane, P.; Sahoo, S.K.; Borse, A.; Kuwar, A. A New Schiff Base as a Turn-off Fluorescent Sensor for Cu2+ and Its Photophysical Properties. Luminescence 2017, 32, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Maurya, N.; Singh, A.K. Indirect Approach for CN− Detection via Cu2+ Induced Turn-off Sensor: Using Novel AIEE Fluorophore with Logic Gate and Antimicrobial Application. Dye. Pigment. 2017, 147, 484–490. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, T.K.; Lee, J.H.; Kim, H.J.; Hong, J.I. Fluorescence Turn-on Probe for Homocysteine and Cysteine in Water. Chem. Commun. 2008, 6173–6175. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Anslyn, E. A Selective Turn-on Fluorescent Sensor for Sulfur Mustard Simulants. J. Am. Chem. Soc. 2013, 135, 6338–6344. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, K.; Wang, Y.; Mao, D.; Liu, X.; Yu, J.; Wang, L. A Novel Cr3+ Turn-on Probe Based on Naphthalimide and BINOL Framework. Tetrahedron Lett. 2014, 55, 351–353. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Y.; Wang, Q. A Fluorescence Turn-on Probe for Al(III) Based on a Naphthaldehyde Derivative. Chem. Lett. 2017, 46, 1605–1607. [Google Scholar] [CrossRef]
- Beatty, M.A.; Borges-González, J.; Sinclair, N.J.; Pye, A.T.; Hof, F. Analyte-Driven Disassembly and Turn-On Fluorescent Sensing in Competitive Biological Media. J. Am. Chem. Soc. 2018, 140, 3500–3504. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, M.; Yan, Y.; Yu, H.; Yu, T.; Jiang, H.; Zhang, K.; Wang, S. A Turn-on Fluorescence Probe for the Selective and Sensitive Detection of Fluoride Ions. Anal. Bioanal. Chem. 2017, 409, 2075–2081. [Google Scholar] [CrossRef]
- Gupta, R.C.; Dwivedi, S.K.; Razi, S.S.; Singh, P.; Koch, B.; Misra, A. A Chemodosimeter Exhibiting Fluorescence Turn-On Response to Detect Copper(II) Ions: Cell Imaging and Logic Function. ChemistrySelect 2019, 4, 2761–2765. [Google Scholar] [CrossRef]
- Mohanasundaram, D.; Kumar, G.G.V.; Kumar, S.K.; Maddiboyina, B.; Raja, R.P.; Rajesh, J.; Sivaraman, G. Turn-on Fluorescence Sensor for Selective Detection of Fluoride Ion and Its Molecular Logic Gates Behavior. J. Mol. Liq. 2020, 317, 113913. [Google Scholar] [CrossRef]
- Li, X.; Huo, F.; Yue, Y.; Zhang, Y.; Yin, C. A Coumarin-Based “off-on” Sensor for Fluorescence Selectivily Discriminating GSH from Cys/Hcy and Its Bioimaging in Living Cells. Sens. Actuators B Chem. 2017, 253, 42–49. [Google Scholar] [CrossRef]
- Shukla, S.; Singh, S.; Mitra, M.D. Photosensitizer Modulated Turn-off Fluorescence System and Molecular Logic Functions for Selective Detection of Arsenic(III). ChemistrySelect 2020, 5, 13609–13618. [Google Scholar] [CrossRef]
- Musib, D.; Devi, L.R.; Raza, M.K.; Chanu, S.B.; Roy, M. A New Thiophene-Based Aggregation-Induced Emission Chemosensor for Selective Detection of Zn2+ Ions and Its Turn Off. Chem. Lett. 2020, 49, 473–476. [Google Scholar] [CrossRef]
- Midya, G.C.; Paladhi, S.; Bhowmik, S.; Saha, S.; Dash, J. Design and Synthesis of an On-off “Click” Fluorophore That Executes a Logic Operation and Detects Heavy and Transition Metal Ions in Water and Living Cells. Org. Biomol. Chem. 2013, 11, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Noushija, M.K.; Shanmughan, A.; Mohan, B.; Shanmugaraju, S. Selective Recognition and Reversible “Turn-Off” Fluorescence Sensing of Acetate (CH3COO−) Anion at Ppb Level Using a Simple Quinizarin Fluorescent Dye. Chemistry 2022, 4, 1407–1416. [Google Scholar]
- Gauci, G.; Magri, D.C. Solvent-Polarity Reconfigurable Fluorescent 4-Piperazino-N-Aryl-1,8-Naphthalimide Crown Ether Logic Gates. RSC Adv. 2022, 12, 35270–35278. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Yin, Z.-X.; Sun, X.; Cui, J.-Z.; Yang, J.; Wang, R.-S. Dynamically NAND Gate System on DNA Origami Template. Comput. Biol. Med. 2019, 109, 112–120. [Google Scholar] [CrossRef]
- Fang, C.J.; Zhu, Z.; Sun, W.; Xu, C.H.; Yan, C.H. New TTF Derivatives: Several Molecular Logic Gates Based on Their Switchable Fluorescent Emissions. New J. Chem. 2007, 31, 580–586. [Google Scholar] [CrossRef]
- Gunnlaugsson, T.; Mac Donail, D.A.; Parker, D. Luminescent Molecular Logic Gates: The Two-Input Inhibit (INH) Function. Chem. Commun. 2000, 2000, 93–94. [Google Scholar] [CrossRef]
- Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A New Trend in Rhodamine-Based Chemosensors: Application of Spirolactam Ring-Opening to Sensing Ions. Chem. Soc. Rev. 2008, 37, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.B.; Qiao, R.; Liao, J.X.; Xiong, W.Z.; Zhang, J.; Chen, S.S.; Yang, S. A Highly Selective and Reversible Fluorescence “OFF-ON-OFF” Chemosensor for Hg2+ Based on Rhodamine-6G Dyes Derivative and Its Application as a Molecular Logic Gate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 202, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Jilal, I.; el Barkany, S.; Bahari, Z.; Sundman, O.; el Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New Quaternized Cellulose Based on Hydroxyethyl Cellulose (HEC) Grafted EDTA: Synthesis, Characterization and Application for Pb(II) and Cu(II) Removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Roy Chowdhury, A.; Bhuyan, S.; Mukhopadhyay, S.K.; Banerjee, P. A Simple Urea-Based Multianalyte and Multichannel Chemosensor for the Selective Detection of F−, Hg2+ and Cu2+ in Solution and Cells and the Extraction of Hg2+ and Cu2+ from Real Water Sources: A Logic Gate Mimic Ensemble. Dalton Trans. 2019, 48, 4375–4386. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ravi, S.; David, C.I.; Nandhakumar, R. A Photo-Induced Electron Transfer Based Reversible Fluorescent Chemosensor for Specific Detection of Mercury (II) Ions and Its Applications in Logic Gate, Keypad Lock and Real Samples. Arabian J. Chem. 2021, 14, 102911. [Google Scholar] [CrossRef]
- Li, Y.-P.; Yang, H.-R.; Zhao, Q.; Song, W.-C.; Han, J.; Bu, X.-H. Ratiometric and Selective Fluorescent Sensor for Zn2+ as an “off-on-off” Switch and Logic Gate. Inorg. Chem. 2012, 51, 9642–9648. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhao, P.; Zhu, W.; Huang, X.; Xie, Y.; Tian, H. Intramolecular Charge-Transfer Process Based on Dicyanomethylene-4H-Pyran Derivative: An Integrated Operation of Half-Subtractor and Comparator. J. Phys. Chem. C 2008, 112, 7047–7053. [Google Scholar] [CrossRef]
- Souto, F.T.; Machado, V.G. Hybrid Films Composed of Ethyl(Hydroxyethyl)Cellulose and Silica Xerogel Functionalized with a Fluorogenic Chemosensor for the Detection of Mercury in Water. Carbohydr. Polym. 2022, 304, 120480. [Google Scholar] [CrossRef]
- Tripathy, M.; Subuddhi, U.; Patel, S. An Azo Dye Based D-π-A Chromogenic Probe for Selective Naked-Eye Detection of Hg2+ Ion: Application in Logic Gate Operation. ChemistrySelect 2020, 5, 4803–4815. [Google Scholar] [CrossRef]
- Andréasson, J.; Straight, S.D.; Kodis, G.; Park, C.-D.; Hambourger, M.; Gervaldo, M.; Albinsson, B.; Moore, T.A.; Moore, A.L.; Gust, D. All-Photonic Molecular Half-Adder. J. Am. Chem. Soc. 2006, 128, 16259–16265. [Google Scholar] [CrossRef]
- Qu, D.-H.; Wang, Q.-C.; Tian, H. A Half Adder Based on a Photochemically Driven [2]Rotaxane. Angew. Chem. 2005, 117, 5430–5433. [Google Scholar] [CrossRef]
- Suresh, M.; Ghosh, A.; Das, A. Half-Subtractor Operation in PH Responsive N-Heterocyclic Amines. Tetrahedron Lett. 2007, 48, 8205–8208. [Google Scholar] [CrossRef]
- Wang, S.; Zang, L.; Zhao, L.; Wang, X.; Hou, Q.; Jiang, S. A Molecular Half-Subtractor with Zn2+ and UV-Light as Inputs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.; Lu, G. A Molecular Half-Subtractor Based on a Fluorescence and Absorption Dual-Modal Sensor for Copper Ions. Tetrahedron Lett. 2008, 49, 5676–5679. [Google Scholar] [CrossRef]
- Mondal, D.; Bar, M.; Maity, D.; Baitalik, S. Anthraimidazoledione-Terpyridine-Based Optical Chemosensor for Anions and Cations That Works as Molecular Half-Subtractor, Key-Pad Lock, and Memory Device. J. Phys. Chem. C 2015, 119, 25429–25441. [Google Scholar] [CrossRef]
- Andréasson, J.; Straight, S.D.; Moore, T.A.; Moore, A.L.; Gust, D. Molecular All-Photonic Encoder−Decoder. J. Am. Chem. Soc. 2008, 130, 11122–11128. [Google Scholar] [CrossRef] [PubMed]
- Andréasson, J.; Pischel, U. Smart Molecules at Work—Mimicking Advanced Logic Operations. Chem. Soc. Rev. 2010, 39, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C.; Brown, G.J.; McClean, G.D.; Prasanna De Silva, A. Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a “Lab-on-a-Molecule” Prototype. J. Am. Chem. Soc. 2006, 128, 4950–4951. [Google Scholar] [CrossRef] [PubMed]
- Scerri, G.J.; Spiteri, J.C.; Mallia, C.J.; Magri, D.C. A Lab-on-a-Molecule with an Enhanced Fluorescent Readout on Detection of Three Chemical Species. Chem. Comm. 2019, 55, 4961–4964. [Google Scholar] [CrossRef]
- Nepogodiev, S.A.; Stoddart, J.F. Cyclodextrin-Based Catenanes and Rotaxanes. Chem. Rev. 1998, 98, 1959–1976. [Google Scholar] [CrossRef]
- Fioravanti, G. Benzylic Amide Rotaxanes: A Versatile Architecture. Curr. Org. Synth. 2012, 9, 199–214. [Google Scholar] [CrossRef]
- Gavina, P.; Tatay, S. Synthetic Strategies for the Construction of Threaded and Interlocked Molecules. Curr. Org. Synth. 2010, 7, 24–43. [Google Scholar] [CrossRef]
- García-Río, L.; Otero-Espinar, F.J.; Luzardo-Alvarez, A.; Blanco-Méndez, J. Cyclodextrin Based Rotaxanes, Polyrotaxanes and Polypseudorotaxanes and Their Biomedical Applications. Curr. Top. Med. Chem. 2014, 14, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, S.; Kimura, M.; Kagami, S.; Kawasaki, T.; Tokunaga, Y. Utilization of a Crown Ether/Amine-Type Rotaxane as a Probe for the Versatile Detection of Anions and Acids by Thin-Layer Chromatography. Chem. Asian J. 2020, 15, 3044–3049. [Google Scholar] [CrossRef]
- Fielden, S.D.P.; Leigh, D.A.; McTernan, C.T.; Perez-Saavedra, B.; Vitorica-Yrezabal, I.J. Spontaneous Assembly of Rotaxanes from a Primary Amine, Crown Ether and Electrophile. J. Am. Chem. Soc. 2018, 140, 6049–6052. [Google Scholar] [CrossRef]
- Langton, M.J.; Beer, P.D. Rotaxane and Catenane Host Structures for Sensing Charged Guest Species. Acc. Chem. Res. 2014, 47, 1935–1949. [Google Scholar] [CrossRef]
- Ashton, P.R.; Baldoni, V.; Balzani, V.; Credi, A.; Hoffmann, H.D.A.; Martinez-Diaz, M.V.; Raymo, F.M.; Stoddart, J.F.; Venturi, M. Dual-Mode “Co-Conformational” Switching in Catenanes Incorporating Bipyridinium and Dialkylammonium Recognition Sites. Chem. Eur. J. 2001, 7, 3482–3493. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.-N.; Zhou, W.; Zhang, H.; Zhang, Q.; Qu, D.-H.; Tian, H. Dual-Mode Operation of a Bistable [1]Rotaxane with a Fluorescence Signal. Org. Lett. 2013, 15, 3070–3073. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.A.; Kuhn, H.; Beer, P.D. Anion and PH Dependent Molecular Motion by a Halogen Bonding [2]Rotaxane. Chem. Commun. 2019, 55, 9975–9978. [Google Scholar] [CrossRef]
- Bai, L.; Xu, Y.; Li, L.; Tao, F.; Wang, S.; Wang, L.; Li, G. An Efficient Water-Soluble Fluorescent Chemosensor Based on Furan Schiff Base Functionalized PEG for the Sensitive Detection of Al3+ in Pure Aqueous Solution. New J. Chem. 2020, 44, 11148–11154. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, H.; Li, F.; Ma, L.; Qiao, X. Hypochlorite Responsive Ratiometric Fluorescent Switch and Logic Gates Based on Lanthanide Functionalized Polymer Nanosphere. Dye. Pigment. 2020, 174, 108033. [Google Scholar] [CrossRef]
- Barnoy, E.A.; Popovtzer, R.; Fixler, D. Fluorescence for Biological Logic Gates. J. Biophotonics 2020, 13, e202000158. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J. Logic-Gate Functions in Chemomechanical Materials. ChemPhysChem 2017, 18, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Wang, F.; Fan, C.; Zuo, X.; Li, Q. Biosensors Based on DNA Logic Gates. View 2021, 2, 20200038. [Google Scholar] [CrossRef]
- Tregubov, A.A.; Nikitin, P.I.; Nikitin, M.P. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem. Rev. 2018, 118, 10294–10348. [Google Scholar] [CrossRef] [PubMed]
- Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.W.N.M. Supramolecular Catalysis. Part 1: Non-Covalent Interactions as a Tool for Building and Modifying Homogeneous Catalysts. Chem. Soc. Rev. 2014, 43, 1660–1733. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.W.N.M. Modern Strategies in Supramolecular Catalysis, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 54, ISBN 978-0-12-387772-7. [Google Scholar]
- Liu, Z.; Sun, Q.; Yan, M.; Zhang, C.; Yuan, H.; He, W. Activity-Based Fluorescent Molecular Logic Gate Probe for Dynamic Tracking of Mitophagy Induced by Oxidative Stress. Anal. Chem. 2021, 93, 3502–3509. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; McClean, G.D.; Pagliari, S. Direct Detection of Ion Pairs by Fluorescence Enhancement. Chem. Commun. 2003, 16, 2010–2011. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pan, J.; Liu, C. Versatile Sensing Platform for Cd2+ Detection in Rice Samples and Its Applications in Logic Gate Computation. Anal. Chem. 2020, 92, 6173–6180. [Google Scholar] [CrossRef]
- Muthusamy, S.; Rajalakshmi, K.; Zhu, D.; Zhu, W.; Wang, S.; Lee, K.B.; Xu, H.; Zhao, L. Dual Detection of Mercury(II) and Lead(II) Ions Using a Facile Coumarin-Based Fluorescent Probe via Excited State Intramolecular Proton Transfer and Photo-Induced Electron Transfer Processes. Sens. Actuators B Chem. 2021, 346, 130534. [Google Scholar] [CrossRef]
- Klockow, J.L.; Hettie, K.S.; Glass, T.E. ExoSensor 517: A Dual-Analyte Fluorescent Chemosensor for Visualizing Neurotransmitter Exocytosis. ACS Chem. Neurosci. 2013, 4, 1334–1338. [Google Scholar] [CrossRef]
- Sachdeva, T.; Milton, M.D. Novel Push-Pull Based Phenothiazine-Benzothiazole Derivatives Integrated with Molecular Logic Gate Operation for Reversible Volatile Acid Detection. J. Mol. Struct. 2021, 1243, 130768. [Google Scholar] [CrossRef]
- Matsuura, S.; Ono, H.; Kawasaki, S.; Kuang, Y.; Fujita, Y.; Saito, H. Synthetic RNA-Based Logic Computation in Mammalian Cells. Nat. Commun. 2018, 9, 4847. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C.; Spiteri, J.C. Proof of Principle of a Three-Input AND-INHIBIT-OR Combinatorial Logic Gate Array. Org. Biomol. Chem. 2017, 15, 6706–6709. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Schmittel, M. A Triple-Channel Lab-on-a-Molecule for Triple-Anion Quantification Using an Iridium(III)–Imidazolium Conjugate. Chem. Commun. 2014, 50, 5756–5759. [Google Scholar] [CrossRef]
- Sandhu, S.; Kumar, R.; Tripathi, N.; Singh, H.; Singh, P.; Kumar, S. Lab-on-a-Molecule Elaboration for Fluorescence Based Discrimination of Commercial Surfactants Sodium Dodecyl Sulfate and Sodium Dodecylbenzenesulfonate. Sens. Actuators B Chem. 2017, 241, 8–18. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Ding, Z.; Wang, H.; Wang, Y.; Liu, Z. A Molecular Logic Gate for Developing “AND” Logic Probes and the Application in Hepatopathy Differentiation. ACS Cent. Sci. 2022, 8, 837–844. [Google Scholar] [CrossRef]
- Konry, T.; Walt, D.R. Intelligent Medical Diagnostics via Molecular Logic. J. Am. Chem. Soc. 2009, 131, 13232–13233. [Google Scholar] [CrossRef]
- Singh, G.; Gupta, S.; Priyanka; Puspa; Rani, B.; Kaur, H.; Vikas; Yadav, R.; Sehgal, R. Designing of Bis-Organosilanes as Dual Chemosensor for Sn(II) and Al(III) Ions: Antibacterial Activity and in Silico Molecular Docking Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123435. [Google Scholar] [CrossRef]
- Paul, S.; Mondal, U.; Nag, S.; Seth, M.; Banerjee, P. Unveiling of a Smartphone-Mediated Ratiometric Chemosensor towards the Nanomolar Level Detection of Lethal CN−: Combined Experimental and Theoretical Validation with the Proposition of a Molecular Logic Circuitry. RSC Adv. 2022, 12, 12564–12572. [Google Scholar] [CrossRef]
- Prabakaran, G.; Vickram, R.; Velmurugan, K.; Immanuel David, C.; Prince Makarios Paul, S.; Suresh Kumar, R.; Almansour, A.I.; Perumal, K.; Abiram, A.; Prabhu, J.; et al. A Lead Selective Dimeric Quinoline Based Fluorescent Chemosensor and Its Applications in Milk and Honey Samples, Smartphone and Bio-Imaging. Food Chem. 2022, 395, 133617. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, S.; Hao, X.; Wang, Z.; Liang, M.; Lu, Y.; Zhou, X. Near-Infrared Molecular Logic Gate for In Situ Construction and Quantification of Cell–Macromolecule Conjugates. Anal. Chem. 2023, 95, 15818–15825. [Google Scholar] [CrossRef] [PubMed]
- Das, G.C.; Kumar Das, A.; Das, D.; Raj Maity, T.; Samanta, A.; Ali Alasmary, F.; Salem Almalki, A.; Iqbal, A.; Dolai, M. Ortho-Vanillin Based Multifunctional Scaffold for Selective Detection of Al3+ and Zn2+ Employing Molecular Logic with DFT Study and Cell Imaging with Live Grass Pea. J. Photochem. Photobiol. A Chem. 2023, 440, 114663. [Google Scholar] [CrossRef]
- Almammadov, T.; Dirak, M.; Saymaz, A.; Acari, A.; Kolemen, S. A Hydrogen Sulfide and Tyrosinase Responsive Dual-Locked Fluorophore for Selective Imaging of Melanoma Cells. Chem. Commun. 2023, 59, 9972–9975. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Mondal, D.; Rajasekaran, V.V.; Goswami, A.; Schmittel, M. Three-Input Logic AND Gate Drives Sequential Three-Step Catalysis by Parallel Activation of H+ and Ag+ as a Catalyst Duo. Inorg. Chem. 2022, 61, 17007–17011. [Google Scholar] [CrossRef]
- Chen, T.; Liu, P.; Wang, H.; Su, Y.; Li, S.; Ma, S.; Xu, X.; Wen, J.; Zou, Z. Dumbbell-Type Triplex Molecular Switch-Based Logic Molecular Assays of SARS-CoV-2. Sens. Actuators B Chem. 2022, 371, 132579. [Google Scholar] [CrossRef]
Logic Function | Analytes/Inputs | Application | Ref. | |
---|---|---|---|---|
1 | AND | ONOO− and mitophagy | Biological detection | [336] |
2 | AND | Na+ and H2PO4− | Ion pair detection | [337] |
3 | AND, OR, INHIBIT, IMPLICATION, NOR, and NAND | Cd2+ | Food safety | [338] |
4 | NOR | Hg2+ and Pb2+ | Cell imaging | [339] |
5 | AND | Amine and pH-based neurotransmitters | Visualization of neurotransmitter exocytosis | [340] |
6 | INHIBIT | TFA and TEA | Detection of neutral molecules | [341] |
7 | AND | Two types of miRNAs | Diagnosis and treatment of diseases | [342] |
8 | AND–INHIBIT–OR | H+, Na+ and Fe3+ | Cation detection | [343] |
9 | Lab-on-a-molecule | F−, H2PO4− and AcO− | Anion detection | [344] |
10 | Lab-on-a-molecule | SDS and SDBS | Differentiation of commercial surfactants | [345] |
11 | AND | Leucine aminopeptidase and monoamine oxidase | Hepatopathy differentiation | [346] |
12 | AND and INHIBIT | Protein and DNA | Medical diagnostics | [347] |
13 | INHIBIT | Sn2+ and Al3+ | Cation detection | [348] |
14 | AND, NOT, XNOR, NAND, and OR | CN− and Cd2+ | Smartphone-assisted prototype | [349] |
15 | INHIBIT | Pb2+ | Food safety | [350] |
16 | AND | N3–PEG and rBSA | Cell imaging | [351] |
17 | NOT, AND, and OR | Al3+ and Zn2+ | Intracellular detection of Al3+ levels in living plant tissue | [352] |
18 | AND | H2S and tyrosinase | Imaging of melanoma cells | [353] |
19 | AND | Ag+, Cd2+, and 2,2,2-trifluoroacetic acid | Catalysis | [354] |
20 | AND | ORF1ab and N genes of SARS-CoV-2 | Detection of SARS-CoV-2 | [355] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, G.G.; Souto, F.T. Architecture of Molecular Logic Gates: From Design to Application as Optical Detection Devices. Organics 2024, 5, 114-162. https://doi.org/10.3390/org5020008
Dias GG, Souto FT. Architecture of Molecular Logic Gates: From Design to Application as Optical Detection Devices. Organics. 2024; 5(2):114-162. https://doi.org/10.3390/org5020008
Chicago/Turabian StyleDias, Gleiston G., and Francielly T. Souto. 2024. "Architecture of Molecular Logic Gates: From Design to Application as Optical Detection Devices" Organics 5, no. 2: 114-162. https://doi.org/10.3390/org5020008
APA StyleDias, G. G., & Souto, F. T. (2024). Architecture of Molecular Logic Gates: From Design to Application as Optical Detection Devices. Organics, 5(2), 114-162. https://doi.org/10.3390/org5020008