Design and Application Research of a UAV-Based Road Illuminance Measurement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Architecture
2.2. System Software Design
2.3. System Outlier Handling
2.4. System Integration
2.5. System Test
3. Results
3.1. Illuminance Collection Human–Machine Comparison Experiment
3.2. UAV Extended Measurement Experiment
3.3. Discussion
- Multi-dimensional measurement and data visualization. The system can measure illuminance data in multiple dimensions of the road and innovatively map the distribution of illuminance in both horizontal and vertical planes at different heights. This multi-dimensional analysis significantly enhances the comprehensiveness and accuracy of road lighting condition assessments.
- Efficient data processing. The adoption of the Z-score algorithm eliminates abnormal values, enhancing the system’s anti-interference capability and ensuring the accuracy of measurement data. The system’s visualization interface allows real-time observation and processing of data, improving data processing efficiency and on-site measurement operability, and facilitating detailed analysis and processing at later stages.
- Ease of operation and safety. Surveyors only need to control and monitor the UAV from the roadside, eliminating the need to operate on the road and significantly improving the safety of road measurements.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackett, M.; Frith, W. Quantifying the impact of road lighting on road safety—A New Zealand Study. IATSS Res. 2013, 36, 139–145. [Google Scholar] [CrossRef]
- Tetri, E.; Bozorg Chenani, S.; Räsänen, R.S.; Baumgartner, H.; Vaaja, M.; Sierla, S.; Kosonen, I. Tutorial: Road lighting for efficient and safe traffic environments. Leukos 2017, 13, 223–241. [Google Scholar] [CrossRef]
- CJJ 45-2005; Standard for Lighting Design of Urban Road. China Building Industry Press: Bejing, China, 2015.
- GB/T 5700-2023; Measurement Methods for Lighting. Standards Press of China: Bejing, China, 2023.
- Sheela, K.S.; Padmadevi, S. Survey on street lighting system based on vehicle movements. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 9220–9225. [Google Scholar]
- Ye, R.; Ye, D.; Ma, C. Research on field detection method of road lighting. J. Light. Eng. 2017, 28, 107–112. [Google Scholar]
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transp. Res. Part. A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef]
- Wang, J.; Simeonova, S.; Shahbazi, M. Orientation-and scale-invariant multi-vehicle detection and tracking from unmanned aerial videos. Remote Sens. 2019, 11, 2155. [Google Scholar] [CrossRef]
- Hossain, M.; Hossain, M.A.; Sunny, F.A. A UAV-Based Traffic Monitoring System for Smart Cities. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019. [Google Scholar]
- Unal, G. Visual target detection and tracking based on Kalman filter. J. Aeronaut. Space Technol. 2021, 142, 251–259. [Google Scholar]
- Kiyak, E.; Gol, G.; Karakoc, T.H. Obstacle detection and collision avoidance using indoor quadrocopter. Int. J. Sustain. Aviat. 2017, 34, 297–311. [Google Scholar] [CrossRef]
- Feroz, S.; Abu Dabous, S. UAV-Based Remote Sensing Applications for Bridge Condition Assessment. Remote Sens. 2021, 13, 1809. [Google Scholar] [CrossRef]
- Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 2020, 247, 111942. [Google Scholar] [CrossRef]
- Massetti, L.; Paterni, M.; Merlino, S. Monitoring Light Pollution with an Unmanned Aerial Vehicle: A Case Study Comparing RGB Images and Night Ground Brightness. Remote Sens. 2022, 14, 2052. [Google Scholar] [CrossRef]
- Vaaja, M.T.; Maksimainen, M.; Kurkela, M.; Virtanen, J.P.; Rantanen, T.; Hyyppä, H. Approaches for mapping night-time road environment lighting conditions. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 199–205. [Google Scholar] [CrossRef]
- Pen, M. Design and Development of Intelligent Illumination Detection System for Sports Venues. Master’s Thesis, Xi'an University of Architecture and Technology, Xi’an, China, 2022. [Google Scholar]
- Jaskowski, P.; Tomczuk, P. Measurement systems used in measuring the illuminance of the road. In Proceedings of the 2019 Second Balkan Junior Conference on Lighting (Balkan Light Junior), Plovdiv, Bulgaria, 19–21 September 2019. [Google Scholar]
- Guyonneau, R.; Mercier, F.; Boucher, V. Robotic system for indoor illuminance map generation. J. Build. Eng. 2024, 86, 108800. [Google Scholar] [CrossRef]
- Chen, C.; Hsu, S.; Yang, T.; Sun, C. Design of an Equipped Vehicle for In Situ Road Lighting Measurement. Sustainability 2023, 15, 10478. [Google Scholar] [CrossRef]
- Tabaka, P. Pilot Measurement of Illuminance in the Context of Light Pollution Performed with an Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 2124. [Google Scholar] [CrossRef]
- Jia, S.; Zou, N.; Xu, S.; Cheng, M. Applied Research of the UAV Illumination Measurement System in Sports Stadiums. Appl. Sci. 2023, 13, 6774. [Google Scholar] [CrossRef]
- Becerra, V.M. Autonomous Control of Unmanned Aerial Vehicles. Electronics 2019, 8, 452. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the technological development and application of UAV systems. Chin. J. Electron. 2020, 292, 199–207. [Google Scholar] [CrossRef]
- Kontogiannis, S.G.; Ekaterinaris, J.A. Design, performance evaluation and optimization of a UAV. Aerosp. Sci. Technol. 2013, 29, 339–350. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, M.; Sun, M.; Sun, J. Distributed Illuminance Measurement System Based on TMS320F28335. In Proceedings of the 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP), Weihai, China, 28–30 September 2019. [Google Scholar]
- Bouroussis, C.A.; Topalis, F.V. Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems—The concept of the drone-gonio-photometer. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107155. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Zou, N.; Kang, Z. Design of a multifunctional illuminometer. Comput. Syst. Appl. 2012, 3, 252–255. [Google Scholar]
- Ye, L.; Gao, N.; Yang, Y.; Li, X. A High-Precision and Low-Cost Broadband LEO 3-Satellite Alternate Switching Ranging/INS Integrated Navigation and Positioning Algorithm. Drones 2022, 6, 241. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, F.; Chen, J.; Bi, Y.; Phang, S.K.; Chen, X. Trajectory Planning for Improving Vision-Based Target Geolocation Performance Using a Quad-Rotor UAV. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2382–2394. [Google Scholar] [CrossRef]
- Li, A. Design and innovative application of minimal single-chip microcomputer system. Sci. Technol. Innov. 2019, 7, 26–27. [Google Scholar]
- Setiawan, A.; Prastowo, A.T.; Darwis, D. Sistem Monitoring Keberadaan Posisi Mobil Berbasis Gps Dan Penyadap Suara Menggunkan Smartphone. J. Tek. Dan. Sist. Komput. 2022, 3, 35–44. [Google Scholar] [CrossRef]
- Jacko, P.; Bereš, M.; Kováčová, I.; Molnár, J.; Vince, T.; Dziak, J.; Fecko, B.; Gans, Š.; Kováč, D. Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips. Sensors 2022, 22, 1440. [Google Scholar] [CrossRef]
- Putri, S.F.M.; Mardiati, R.; Setiawan, A.E. The Prototype of Arm Robot for Object Mover Using Arduino Mega 2560. In Proceedings of the 2022 8th International Conference on Wireless and Telematics (ICWT), Yogyakarta, Indonesia, 21–22 July 2022. [Google Scholar]
- Zhang, C.L.; Mei, Y.P.; Wang, J. Design of ultrasonic rangefinder based on STC89C52 microcontroller. Ind. Technol. Innov. 2020, 7, 33–37. [Google Scholar]
- Mesquita, J.; Guimarães, D.; Pereira, C.; Santos, F.; Almeida, L. Assessing the ESP8266 WiFi module for the Internet of Things. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7 September 2018. [Google Scholar]
- Barai, A.R.; Badhon, M.R.K.; Zhora, F.; Rahman, M.R. Comparison between noninvasive heart rate monitoring systems using GSM module and ESP8266 Wi-Fi module. In Proceedings of the 2019 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh, 26–28 December 2019. [Google Scholar]
- Gladwin Antony, R.; Hariharan, S.; Hari Haran, D.; Clement Raj, C. Design of Solar Charging Case for Mobile Phones. J. Phys. Conf. Ser. 2021, 2040, 012031. [Google Scholar] [CrossRef]
- Long, Q.L.; Niu, D.X.; Lin, L.Y. Intelligent energy-saving control system based on OneNET Cloud platform and MQTT protocol of Internet of Things. Comput. Meas. Control 2021, 29, 127–130. [Google Scholar]
- Mahama, S.; Harbi, Y.J.; Burr, A.G.; Grace, D. Design and Convergence Analysis of an IIC-Based BICM-ID Receiver for FBMC-QAM Systems. IEEE Open J. Comm. Soc. 2020, 1, 563–577. [Google Scholar] [CrossRef]
- AGupta, A.K.; Raman, A.; Kumar, N.; Ranjan, R. Design and Implementation of High-Speed Universal Asynchronous Receiver and Transmitter (UART). In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020. [Google Scholar]
- Salcedo, R.; Zhu, H.; Zhang, Z.; Wei, Z.; Chen, L.; Ozkan, E.; Falchieri, D. Foliar deposition and coverage on young apple trees with PWM-controlled spray systems. Comput. Electron. Agric. 2020, 178, 105794. [Google Scholar] [CrossRef]
- Sowmya, K.B.; Gomes, S.; Tadiparthi, V.R. Design of UART Module using ASMD Technique. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020. [Google Scholar]
- Zhao, T.; Yu, Z.; Han, J.; Zhang, M.; Wang, J. Design for Spatiotemporal Information Cloud Platform of Smart City Based on OSGi. J. Phys. Conf. Ser. 2021, 1732, 012018. [Google Scholar] [CrossRef]
- Merza, E.O.; Mohammed, N.J. Fast Ways to Detect Outliers. J. Tech. 2021, 3, 66–73. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, F.; Lu, T.; You, W. Comparative Analysis of three outlier detection methods in univariate data sets. In Proceedings of the 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, China, 14–16 January 2022. [Google Scholar]
- Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 2019, 11, 908. [Google Scholar] [CrossRef]
- Prayudani, S.; Hizriadi, A.; Lase, Y.Y.; Fatmi, Y. Analysis accuracy of forecasting measurement technique on random K-nearest neighbor (RKNN) using MAPE and MSE. In Proceedings of the 1st International Conference of SNIKOM 2018, Medan, Indonesia, 23–24 November 2018. [Google Scholar]
- Maemura, T.; Nakura, K.; Suzuki, H.; Nakura, K.; Akizuki, Y.; Iwata, M.; Matsumoto, N. Preliminary study of illumination distribution measurement making use of quadcopter-examination of accuracy and drawing of illumination distribution. In Proceedings of the 11th Asian Forum on Graphic Science, Tokyo, Japan, 6–10 August 2017. [Google Scholar]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model. Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Hua, X.; Zhanlang, W.; Guancheng, W. Influence factors on illuminance distribution uniformity and energy saving of the indoor illumination control method. Appl. Opt. 2023, 62, 2531–2540. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Zou, N.; He, Q.; He, X.; Li, K.; Cheng, M.; Liu, K. Design and Application Research of a UAV-Based Road Illuminance Measurement System. Automation 2024, 5, 407-431. https://doi.org/10.3390/automation5030024
Xu S, Zou N, He Q, He X, Li K, Cheng M, Liu K. Design and Application Research of a UAV-Based Road Illuminance Measurement System. Automation. 2024; 5(3):407-431. https://doi.org/10.3390/automation5030024
Chicago/Turabian StyleXu, Songhai, Nianyu Zou, Qipeng He, Xiaoyang He, Kexian Li, Min Cheng, and Kai Liu. 2024. "Design and Application Research of a UAV-Based Road Illuminance Measurement System" Automation 5, no. 3: 407-431. https://doi.org/10.3390/automation5030024
APA StyleXu, S., Zou, N., He, Q., He, X., Li, K., Cheng, M., & Liu, K. (2024). Design and Application Research of a UAV-Based Road Illuminance Measurement System. Automation, 5(3), 407-431. https://doi.org/10.3390/automation5030024