Early Life Stress and Brain Plasticity: From Alterations of Brain Morphology to Development of Psychopathology
Abstract
:1. Background
2. Review Questions
- Investigate the neurobiological models of the effects of adversity on risk for mental disorder, including allostatic load, accelerated maturation, dimensional models, and sensitive period models on the development of psychopathology;
- Evaluate the major mechanisms of neuroplasticity that unfold over the course of prenatal to adolescent development;
- Investigate the Neuro-immune impacts of early-life stress on development and psychopathology;
- Determine the relationship between early life adversity and the development of schizophrenia.
3. Method
3.1. Study Selection
3.2. The Domain of the Study
3.2.1. Participant/Population
3.2.2. Interventions/Interest
3.3. Comparator(s)/Controls
3.4. Types of Studies to Be Included
3.4.1. Inclusion Criteria
3.4.2. Exclusion Criteria
4. Main Outcomes
4.1. Measures of Effect
4.2. Additional Outcome(s)
4.3. Search Procedure
4.4. Selection Process
4.5. Data Extraction
4.6. Risk of Bias and Quality Assessment
4.7. Statistical Analysis
5. Discussion
- Mr. Fredrick Otieno Oginga. The University of KwaZulu-Natal, College of Health Science, School of Laboratory Medicine and Medical Science, Department of Human Physiology.
- Mr. Thabo Magwai. The University of KwaZulu-Natal, College of Health Science, School of Laboratory Medicine and Medical Science, Department of Human Physiology.
- Mr. Khanyiso Bright Shangase. The University of KwaZulu-Natal, College of Health Science, School of Laboratory Medicine and Medical Science, Department of Human Physiology.
- Dr. Khethelo Richman Xulu. The University of KwaZulu-Natal, College of Health Science, School of Laboratory Medicine and Medical Science, Department of Human Physiology.
- Dr. Thabisile Mpofana. The University of KwaZulu-Natal, College of Health Science, School of Laboratory Medicine and Medical Science, Department of Human Physiology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ACE | Adverse childhood experiences. |
GRADE | Grading and recommendations assessment, development, and evaluation. |
MeSH | Medical subjects headings. |
PRISMA-P | Preferred reporting items for systematic review and meta-analysis protocols. |
PROSPERO | Prospective register of systematic reviews. |
MDD | Major depressive disorder or depression. |
References
- Le Moult, J.; Humphreys, K.L.; Tracy, A.; Hoffmeister, J.-A.; Ip, E.; Gotlib, I.H. Meta-analysis: Exposure to Early Life Stress and Risk for Depression in Childhood and Adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Colaianna, M.; Curtis, L. Impact of Early Life Stress on the Pathogenesis of Mental Disorders: Relation to Brain Oxidative Stress. Curr. Pharm. Des. 2015, 21, 1404–1412. [Google Scholar] [CrossRef]
- Wells, R.; Jacomb, I.; Swaminathan, V.; Sundram, S.; Weinberg, D.; Bruggemann, J.; Cropley, V.; Lenroot, R.K.; Pereira, A.M.; Zalesky, A.; et al. The Impact of Childhood Adversity on Cognitive Development in Schizophrenia. Schizophr. Bull. 2020, 46, 140–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzberg, M.P.; Gunnar, M.R. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. NeuroImage 2020, 209, 116493. [Google Scholar] [CrossRef] [PubMed]
- Luby, J.L.; Baram, T.Z.; Rogers, C.E.; Barch, D.M. Neurodevelopmental Optimization after Early-Life Adversity: Cross-Species Studies to Elucidate Sensitive Periods and Brain Mechanisms to Inform Early Intervention. Trends Neurosci. 2020, 43, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Rokita, K.; Dauvermann, M.R.; Mothersill, D.; Holleran, L.; Holland, J.; Costello, L.; O’donoghue, C.; Cullen, C.; Daly-Ryan, N.; McDonald, C.; et al. S4. Childhood Trauma and Social Cognition in Schizophrenia. Schizophr. Bull. 2019, 45, S307. [Google Scholar] [CrossRef]
- Bhopal, S.; Roy, R.; Verma, D.; Kumar, D.; Avan, B.; Khan, B.; Gram, L.; Sharma, K.; Amenga-Etego, S.; Panchal, S.N.; et al. Impact of adversity on early childhood growth & development in rural India: Findings from the early life stress sub-study of the SPRING cluster randomised controlled trial (SPRING-ELS). PLoS ONE 2019, 14, e0209122. [Google Scholar] [CrossRef]
- Lester, B.M.; Conradt, E.; Marsit, C. Epigenetic Basis for the Development of Depression in Children. Clin. Obstet. Gynecol. 2013, 56, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Cowan, C.; Callaghan, B.L.; Kan, J.M.; Richardson, R. The lasting impact of early-life adversity on individuals and their descendants: Potential mechanisms and hope for intervention. Genes Brain Behav. 2016, 15, 155–168. [Google Scholar] [CrossRef]
- Ho, T.C.; King, L.S. Mechanisms of neuroplasticity linking early adversity to depression: Developmental considerations. Transl. Psychiatry 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Brown, S.E.; Weaver, I.C.; Meaney, M.J.; Szyf, M. Regional-specific global cytosine methylation and DNA methyltransferase expression in the adult rat hippocampus. Neurosci. Lett. 2008, 440, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Pan, F.; Tang, Y.; Huang, J.H. Editorial: Early Life Stress-Induced Epigenetic Changes Involved in Mental Disorders. Front. Genet. 2021, 12, 684844. [Google Scholar] [CrossRef] [PubMed]
- Weaver, I.; Meaney, M.J.; Szyf, M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl. Acad. Sci. USA 2006, 103, 3480–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front. Psychiatry 2019, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szyf, M. The epigenetics of perinatal stress. Dialog. Clin. Neurosci. 2019, 21, 369–378. [Google Scholar] [CrossRef]
- Magwai, T.; Shangase, K.B.; Oginga, F.O.; Chiliza, B.; Mpofana, T.; Xulu, K.R. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021, 10, 2890. [Google Scholar] [CrossRef]
- Kumsta, R.; Marzi, S.; Viana, J.; Dempster, E.; Crawford, B.; Rutter, M.L.; Mill, J.; Sonuga-Barke, E.J.S. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl. Psychiatry 2016, 6, e830. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.C.; Gutman, B.; Pozzi, E.; Grabe, H.J.; Hosten, N.; Wittfeld, K.; Völzke, H.; Baune, B.; Dannlowski, U.; Förster, K.; et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Hum. Brain Mapp. 2020, 43, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Fu, Y.; Wu, J.; Zhang, W.; Yu, Y.; Zhang, Z.; Wu, X.; Wang, Y.; Hu, B. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav. 2020, 14, 653–667. [Google Scholar] [CrossRef]
- Heim, C.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology 2008, 33, 693–710. [Google Scholar] [CrossRef]
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. Anxiety Disorders 2020, 1191, 141–153. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Gaspersz, R.; Lamers, F.; Wittenberg, G.; Beekman, A.T.F.; Van Hemert, A.M.; Schoevers, R.A.; Penninx, B.W.J.H. The role of anxious distress in immune dysregulation in patients with major depressive disorder. Transl. Psychiatry 2017, 7, 1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolvi, S.; Rasmussen, J.M.; Graham, A.M.; Gilmore, J.H.; Styner, M.; Fair, D.A.; Entringer, S.; Wadhwa, P.D.; Buss, C. Neonatal brain volume as a marker of differential susceptibility to parenting quality and its association with neurodevelopment across early childhood. Dev. Cogn. Neurosci. 2020, 45, 100826. [Google Scholar] [CrossRef] [PubMed]
- Cosco, T.D.; Hardy, R.; Howe, L.D.; Richards, M. Early-life adversity, later-life mental health, and resilience resources: A longitudinal population-based birth cohort analysis. Int. Psychogeriatr. 2019, 31, 1249–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.A.; Gabard-Durnam, L.J. Early Adversity and Critical Periods: Neurodevelopmental Consequences of Violating the Expectable Environment. Trends Neurosci. 2020, 43, 133–143. [Google Scholar] [CrossRef]
- Smith, K.E.; Pollak, S.D. Rethinking Concepts and Categories for Understanding the Neurodevelopmental Effects of Childhood Adversity. Perspect. Psychol. Sci. 2021, 16, 67–93. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Cochrane Bias Methods Group; CLARITY Working Group. Tools to Assess Risk of Bias in Cohort Studies; The Cochrane Collaboration: London, UK, 2013. [Google Scholar]
- Vander Weele, T.J.; Vansteelandt, S. Odds Ratios for Mediation Analysis for a Dichotomous Outcome. Am. J. Epidemiol. 2010, 172, 1339–1348. [Google Scholar] [CrossRef]
- Smith, K.E.; Pollak, S.D. Early life stress and development: Potential mechanisms for adverse outcomes. J. Neurodev. Disord. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Mpofana, T.; Daniels, W.M.U.; Mabandla, M.V. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model. Park. Dis. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmina, A.B.; Gorina, Y.V.; Komleva, Y.K.; Panina, Y.A.; Malinovskaya, N.A.; Lopatina, O.L. Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Hirai, S.; Hosokawa, M.; Saito, T.; Sakuma, H.; Saido, T.; Hasegawa, M.; Okado, H. Early-life stress induces the development of Alzheimer’s disease pathology via angiopathy. Exp. Neurol. 2021, 337, 113552. [Google Scholar] [CrossRef] [PubMed]
- Boecker, R.; Holz, N.E.; Buchmann, A.F.; Blomeyer, D.; Plichta, M.M.; Wolf, I.; Baumeister, S.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; et al. Impact of Early Life Adversity on Reward Processing in Young Adults: EEG-fMRI Results from a Prospective Study over 25 Years. PLoS ONE 2014, 9, e104185. [Google Scholar] [CrossRef]
- Garcia-Rizo, C.; Bitanihirwe, B.K. Implications of early life stress on fetal metabolic programming of schizophrenia: A focus on epiphenomena underlying morbidity and early mortality. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 101, 109910. [Google Scholar] [CrossRef]
- Maron, E.; Nutt, D. Biological markers of generalized anxiety disorder. Dialog. Clin. Neurosci. 2017, 19, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Wojtalik, J.; Eack, S.M.; Smith, M.J.; Keshavan, M.S. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. J. Soc. Soc. Work. Res. 2018, 9, 223–260. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oginga, F.O.; Magwai, T.; Shangase, K.B.; Xulu, K.R.; Mpofana, T. Early Life Stress and Brain Plasticity: From Alterations of Brain Morphology to Development of Psychopathology. NeuroSci 2022, 3, 104-110. https://doi.org/10.3390/neurosci3010008
Oginga FO, Magwai T, Shangase KB, Xulu KR, Mpofana T. Early Life Stress and Brain Plasticity: From Alterations of Brain Morphology to Development of Psychopathology. NeuroSci. 2022; 3(1):104-110. https://doi.org/10.3390/neurosci3010008
Chicago/Turabian StyleOginga, Fredrick Otieno, Thabo Magwai, Khanyiso Bright Shangase, Khethelo Richman Xulu, and Thabisile Mpofana. 2022. "Early Life Stress and Brain Plasticity: From Alterations of Brain Morphology to Development of Psychopathology" NeuroSci 3, no. 1: 104-110. https://doi.org/10.3390/neurosci3010008
APA StyleOginga, F. O., Magwai, T., Shangase, K. B., Xulu, K. R., & Mpofana, T. (2022). Early Life Stress and Brain Plasticity: From Alterations of Brain Morphology to Development of Psychopathology. NeuroSci, 3(1), 104-110. https://doi.org/10.3390/neurosci3010008