Comparison of Surgical Techniques in Managing Craniosynostosis: Systematic Review and Bayesian Network Meta-Analysis
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Search Strategies
2.3. Inclusion and Exclusion Criteria
2.4. Screening and Selection
2.5. Critical Appraisal
2.6. Data Extraction
2.7. Statistical Analysis
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Quality of Included Studies
3.4. Network Meta-Analysis
3.5. Rank Probabilities
3.6. Publication Bias
4. Discussion
4.1. Surgical Techniques for Craniosynostosis Management
4.1.1. Open Total Cranial Vault Reconstruction
4.1.2. Endoscopic Suturectomy
4.1.3. Endoscopy-Assisted Craniectomy
4.1.4. Spring-Assisted Surgery
4.1.5. Strip Craniectomy with Helmet
4.1.6. Pi Craniectomy
4.1.7. Pi Plasty
4.1.8. Renier’s “H” Technique
4.2. Comparisons of the Surgical Techniques
4.3. Recommendations
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blessing, M.; Gallagher, E.R. Epidemiology, genetics, and pathophysiology of craniosynostosis. Oral Maxillofac. Surg. Clin. 2022, 34, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Öğüt, E.; Güzelad, Ö.; Yıldırım, F.B. Anatomical and Morphometric Evaluation of the Cranial Index and Its Relevance to Clinical Syndromes. Meandros Med. Dent. J. 2023, 24, 46–51. [Google Scholar] [CrossRef]
- Osborn, A.J.; Lange, O.; Roberts, R.M. Attention Deficit/Hyperactivity Disorder in Individuals with Non-Syndromic Craniosynostosis: A Systematic Review and Meta-Analysis. Dev. Neuropsychol. 2024, 49, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Osborn, A.; Roberts, R.M.; Mathias, J.; Anderson, P.; Flapper, W. Cognitive, behavioral and psychological functioning of children and adults with conservatively managed metopic synostosis. Child Neuropsychol. 2021, 27, 190–208. [Google Scholar] [CrossRef]
- Shlobin, N.A.; Baticulon, R.E.; Ortega, C.A.; Du, L.; Bonfield, C.M.; Wray, A.; Forrest, C.R.; Dewan, M.C. Global Epidemiology of Craniosynostosis: A Systematic Review and Meta-Analysis. World Neurosurg. 2022, 164, 413–423.e413. [Google Scholar] [CrossRef]
- Sithole, P.A.; Motshabi-Chakane, P.; Muteba, M.K. The characteristics and perioperative outcomes of children with orofacial clefts managed at an academic hospital in Johannesburg, South Africa. BMC Pediatr. 2022, 22, 214. [Google Scholar] [CrossRef]
- Taheri, Z.; Babaee, T.; Moradi, E.; Hajiaghaei, B.; Mohammadi, H.R. Minimally invasive craniectomy and postoperative cranial remolding orthotic treatment in infants with craniosynostosis: A multicenter prospective study. World Neurosurg. X 2023, 19, 100207. [Google Scholar] [CrossRef]
- Riazi, A.; Mahdkhah, A.; Ibrahim Ashkaran, M.; Sheibani Tehrani, D. Physical and neurocognitive outcomes of children with primary Non-Syndromic Single-Suture craniosynostosis. Interdiscip. Neurosurg. 2023, 34, 101809. [Google Scholar] [CrossRef]
- Rostamzad, P.; Arslan, Z.F.; Mathijssen, I.M.; Koudstaal, M.J.; Pleumeekers, M.M.; Versnel, S.L.; Loudon, S.E. Prevalence of ocular anomalies in craniosynostosis: A systematic review and meta-analysis. J. Clin. Med. 2022, 11, 1060. [Google Scholar] [CrossRef]
- Meazzini, M.C.; Corradi, F.; Mazzoleni, F.; De Ponti, E.; Maccagni, M.; Novelli, G.; Bozzetti, A. Circummaxillary sutures in patients with Apert, Crouzon, and Pfeiffer syndromes compared to nonsyndromic children: Growth, orthodontic, and surgical implications. Cleft Palate-Craniofacial J. 2021, 58, 299–305. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ogura, K.; Hikita, R.; Tsuji, M.; Moriyama, K. Craniofacial, oral, and cervical morphological characteristics in Japanese patients with Apert syndrome or Crouzon syndrome. Eur. J. Orthod. 2021, 43, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Calpena, E.; Cuellar, A.; Bala, K.; Swagemakers, S.M.; Koelling, N.; McGowan, S.J.; Phipps, J.M.; Balasubramanian, M.; Cunningham, M.L.; Douzgou, S. SMAD6 variants in craniosynostosis: Genotype and phenotype evaluation. Genet. Med. 2020, 22, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. Craniofacial malformations and their association with brain development: The importance of a multidisciplinary approach for treatment. Odontology 2020, 108, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. The Developmental Interrelation Between the Nervous System and Craniofacial Complex as Evidenced from Craniofacial Malformations. In Fundamentals of Craniofacial Malformations: Volume 1, Disease and Diagnostics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 39–52. [Google Scholar]
- Xue, A.S.; Buchanan, E.P.; Hollier, L.H., Jr. Update in management of craniosynostosis. Plast. Reconstr. Surg. 2022, 149, 1209e–1223e. [Google Scholar] [CrossRef]
- Habarth-Morales, T.E.; Davis, H.D.; Duca, A.; Salinero, L.K.; Chandragiri, S.; Rios-Diaz, A.J.; Broach, R.B.; Caterson, E.J.; Swanson, J.W. Factors associated with late surgical correction of craniosynostosis: A decade-long review of the United States nationwide readmission database. J. Cranio-Maxillofac. Surg. 2024, 52, 585–590. [Google Scholar] [CrossRef]
- Hengartner, A.C.; Serrato, P.; Sayeed, S.; Prassinos, A.J.; Alperovich, M.; DiLuna, M.; Elsamadicy, A.A. Associated risk factors for extended length of stay following cranial vault remodeling for craniosynostosis: Analysis of the 2012 to 2021 NSQIP-Pediatric Database. J. Craniofacial Surg. 2024, 35, 384–387. [Google Scholar] [CrossRef]
- Park, K.M.; Tripathi, N.V.; Al-Mufarrej, F. Quality of life in patients with craniosynostosis and deformational plagiocephaly: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2021, 149, 110873. [Google Scholar] [CrossRef]
- Belza, C.C.; Modi, R.N.; Kamel, G.N.; McKee, R.M.; Carbullido, M.K.; Kim, E.; Gosman, A.A. Perioperative comparison between open cranial vault remodeling and distraction osteogenesis for unilateral lambdoid craniosynostosis. J. Craniofacial Surg. 2023, 34, 1222–1225. [Google Scholar] [CrossRef]
- Al-Shaqsi, S.Z.; Lam, N.W.; Forrest, C.R.; Phillips, J.H. Endoscopic versus open total vault reconstruction of sagittal craniosynostosis. J. Craniofacial Surg. 2021, 32, 915–919. [Google Scholar] [CrossRef]
- Albuz, B.; Coskun, M.E.; Egemen, E. Endoscopy-Assisted Craniosynostosis Surgery Versus Cranial Vault Remodeling for Non-Syndromic Craniosynostosis: Experience of a Single Center. Turk. Neurosurg. 2024, 34, 102–112. [Google Scholar] [CrossRef]
- Chiang, S.N.; Skolnick, G.B.; Naidoo, S.D.; Smyth, M.D.; Patel, K.B. Outcomes after endoscope-assisted strip craniectomy and orthotic therapy for syndromic craniosynostosis. Plast. Reconstr. Surg. 2023, 151, 832–842. [Google Scholar] [PubMed]
- Hevia-Rodríguez, P.; Romero-López, C.; Martín-Fernández, J.; Rivero-Garvía, M.; Márquez-Rivas, J. Endoscopy-Assisted Craniosynostosis Surgery without Postoperative Helmet Molding Therapy. World Neurosurg. 2024, 183, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Richardson, I.J.; Wager, L.E.; Recker, M.J.; Reynolds, R.; Ruiz, R.; Markiewicz, M.R. Morbidity associated with anterior versus posterior cranial vault expansion for early treatment of syndromic craniosynostosis: A systematic review and meta-analysis. J. Oral Maxillofac. Surg. 2022, 80, 651–661. [Google Scholar] [CrossRef]
- Gerety, P.; Basta, M.N.; Fischer, J.P.; Taylor, J.A.; Bartlett, S.P. Operative management of non-syndromic sagittal craniosynostosis: A head-to-head meta-analysis of outcomes comparing three techniques. Plast. Reconstr. Surg. 2014, 134, 23–24. [Google Scholar] [CrossRef]
- Villavisanis, D.; Blum, J.D.; Cho, D.Y.; Barrero, C.; Swanson, J.W.; Nah, H.-D.; Shakir, S.; Taylor, J.A.; Bartlett, S.P. Suture Fusion, Cephalic Index, and Head Shape in Non-syndromic Sagittal Craniosynostosis. Plast. Reconstr. Surg. Glob. Open 2022, 10, 132–133. [Google Scholar] [CrossRef]
- Villavisanis, D.F.; Shakir, S.; Zhao, C.; Cho, D.Y.; Barrero, C.; Blum, J.D.; Swanson, J.W.; Bartlett, S.P.; Tucker, A.M.; Taylor, J.A. Predicting Changes in Cephalic Index Following Spring-mediated Cranioplasty for Nonsyndromic Sagittal Craniosynostosis: A Stepwise and Machine Learning Algorithm Approach. J. Craniofacial Surg. 2022, 33, 2333–2338. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott. Hosp. Res. Inst. 2011, 2, 1–12. [Google Scholar]
- Iqhrammullah, M.; Duta, T.F.; Alina, M.; Qanita, I.; Naufal, M.A.; Henira, N.; Tsurayya, G.; Fathima, R.; Rizki, A.Y.K.; Amirah, S. Role of lowered level of serum vitamin D on diabetic foot ulcer and its possible pathomechanism: A systematic review, meta-analysis, and meta-regression. Diabetes Epidemiol. Manag. 2024, 13, 100175. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wikurendra, E.A.; Aulia, A.; Fauzi, M.L.; Fahmi, I.; Amri, I. Willingness-to-pay for urban green space: A meta-analysis of surveys across China. Narra X 2023, 1, e105. [Google Scholar] [CrossRef]
- Chi, D.; Gibson, E.; Chiang, S.N.; Lee, K.; Naidoo, S.D.; Lee, A.; Birgfeld, C.; Pollack, I.F.; Goldstein, J.; Golinko, M. A multi-institutional survey on calvarial vault remodeling techniques for sagittal synostosis and outcomes analysis for patients treated at 12 months and older. J. Neurosurg. Pediatr. 2022, 30, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, G.B.; Yu, J.L.; Patel, K.B.; David, L.R.; Couture, D.E.; Smyth, M.D.; Woo, A.S. Comparison of 2 sagittal craniosynostosis repair techniques: Spring-assisted surgery versus endoscope-assisted craniectomy with helmet molding therapy. Cleft Palate Craniofacial J. 2021, 58, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Magge, S.N.; Bartolozzi, A.R.; Almeida, N.D.; Tsering, D.; Myseros, J.S.; Oluigbo, C.O.; Rogers, G.F.; Keating, R.F. A comparison of endoscopic strip craniectomy and pi craniectomy for treatment of sagittal craniosynostosis. J. Neurosurg. Pediatr. 2019, 23, 708–714. [Google Scholar] [CrossRef]
- Taylor, J.A.; Paliga, J.T.; Wes, A.M.; Tahiri, Y.; Goldstein, J.A.; Whitaker, L.A.; Bartlett, S.P. A critical evaluation of long-term aesthetic outcomes of fronto-orbital advancement and cranial vault remodeling in nonsyndromic unicoronal craniosynostosis. Plast. Reconstr. Surg. 2015, 135, 220–231. [Google Scholar] [CrossRef]
- Spazzapan, P.; Verdenik, M.; Velnar, T. Biparietal remodelling and total vault remodelling in scaphocephaly—A comparative study using 3d stereophotogrammetry. Child’s Nerv. Syst. 2024, 40, 517–526. [Google Scholar] [CrossRef]
- Crofts, H.; Mankowski, P.; Tamber, M.; Courtemanche, D.J. Head Shape After Sagittal Craniosynostosis Surgery: Open Versus Endoscopic Strip Craniectomy. Plast. Surg. 2023, 22925503231184262. [Google Scholar] [CrossRef]
- Windh, P.; Davis, C.; Sanger, C.; Sahlin, P.; Lauritzen, C. Spring-assisted cranioplasty vs pi-plasty for sagittal synostosis-a long term follow-up study. J. Craniofacial Surg. 2008, 19, 59–64. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Trikalinos, T.A. The appropriateness of asymmetry tests for publication bias in meta-analyses: A large survey. CMAJ 2007, 176, 1091–1096. [Google Scholar] [CrossRef]
- Meulstee, J.; Bussink, T.; Delye, H.; Xi, T.; Borstlap, W.; Maal, T. Surgical guides versus augmented reality to transfer a virtual surgical plan for open cranial vault reconstruction: A pilot study. Adv. Oral Maxillofac. Surg. 2022, 8, 100334. [Google Scholar] [CrossRef]
- Rattani, A.; Riordan, C.P.; Meara, J.G.; Proctor, M.R. Comparative analysis of cranial vault remodeling versus endoscopic suturectomy in the treatment of unilateral lambdoid craniosynostosis. J. Neurosurg. Pediatr. 2020, 26, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Agushi, R.; Scagnet, M.; Spacca, B.; Mura, R.; Grandoni, M.; Mussa, F.; Genitori, L. Is endoscope-assisted strip craniectomy the future of metopic suture craniosynostosis treatment? An 11-year experience with 62 patients. J. Neurosurg. Pediatr. 2023, 32, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mellgren, J.; Maltese, G.; Tarnow, P.; Bhatti-Søfteland, M.; Kölby, L.; Säljö, K. Spring-Assisted Surgery of Unilambdoid Craniosynostosis. J. Craniofacial Surg. 2024, 35, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, H.A.; Ghany, W.A.A.; Latif, A.M.A.; Elsabagh, A.E.M. Craniometrics and Perioperative Variants in Non-Syndromic Single Suture Craniosynostosis with Cranial Vault Remodelling Surgery and Strip Craniotomy with and without Endoscopic Assistance: Systematic Review. QJM Int. J. Med. 2021, 114, hcab108. [Google Scholar] [CrossRef]
- Rizvi, I.; Hallac, R.R.; Geisler, E.L.; Perez, J.K.; Ainuz, B.Y.; Pressler, M.P.; Jackson, S.A.; Skolnick, G.B.; Smyth, M.D.; Seaward, J.R. Multicenter comparison of head shape outcomes for three minimally invasive strip craniectomy techniques for sagittal craniosynostosis. J. Neurosurg. Pediatr. 2023, 32, 277–284. [Google Scholar] [CrossRef]
- Coelho, G.; Rabelo, N.N.; Adani, L.B.; Cecilio-Fernandes, D.; Carvalho, F.R.S.; Pinto, F.G.; Zanon, N.; Teixeira, M.J.; Figueiredo, E.G. The craniosynostosis puzzle: New simulation model for neurosurgical training. World Neurosurg. 2020, 138, e299–e304. [Google Scholar] [CrossRef]
- Humphries, L.S.; Swanson, J.W.; Bartlett, S.P.; Taylor, J.A. Craniosynostosis: Posterior cranial vault remodeling. Clin. Plast. Surg. 2021, 48, 455–471. [Google Scholar] [CrossRef]
- Chaisrisawadisuk, S.; Phakdeewisetkul, K.; Sirichatchai, K.; Hammam, E.; Prasad, V.; Moore, M.H. Early Bone and Suture Reformations in Different Cranial Regions After Cranial Vault Remodeling for Sagittal Craniosynostosis. J. Craniofacial Surg. 2024, 10, 1097. [Google Scholar] [CrossRef]
- Musavi, L.; Lopez, J.; Cho, R.; Siegel, N.; Seal, S.; Dorafshar, A.H.; Steinberg, J.P. Infectious complications after open cranial vault remodeling for craniosynostosis. J. Craniofacial Surg. 2020, 31, 32–36. [Google Scholar] [CrossRef]
- Melin, A.A.; Moffitt, J.; Hopkins, D.C.; Shah, M.N.; Fletcher, S.A.; Sandberg, D.I.; Teichgraeber, J.F.; Greives, M.R. Is less actually more? An evaluation of surgical outcomes between endoscopic suturectomy and open cranial vault remodeling for craniosynostosis. J. Craniofacial Surg. 2020, 31, 924–926. [Google Scholar] [CrossRef]
- Alperovich, M.; Runyan, C.M.; Gabrick, K.S.; Wu, R.T.; Morgan, C.; Park, S.E.; Chapman, L.A.; Couture, D.E.; David, L.R.; Persing, J.A. Long-term neurocognitive outcomes of spring-assisted surgery versus cranial vault remodeling for sagittal synostosis. Plast. Reconstr. Surg. 2021, 147, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Marupudi, N.I.; Reisen, B.; Rozzelle, A.; Sood, S. Endoscopy in craniosynostosis surgery: Evolution and current trends. J. Pediatr. Neurosci. 2022, 17, S44–S53. [Google Scholar] [CrossRef] [PubMed]
- Valetopoulou, A.; Constantinides, M.; Eccles, S.; Ong, J.; Hayward, R.; Dunaway, D.; James, G.; Silva, A.H.D. Endoscopic strip craniectomy with molding helmet therapy versus spring-assisted cranioplasty for nonsyndromic single-suture sagittal craniosynostosis: A systematic review. J. Neurosurg. Pediatr. 2022, 30, 455–462. [Google Scholar] [CrossRef]
- Maltese, G.; Fischer, S.; Strandell, A.; Tarnow, P.; Kölby, L. Spring-assisted surgery in the treatment of sagittal synostosis: A systematic review. J. Plast. Surg. Hand Surg. 2015, 49, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, R.; Tarnow, P.; Kölby, L.; Maltese, G. Spring-assisted surgery in the treatment of complex craniosynostosis. J. Craniofacial Surg. 2018, 29, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Lutz, K.; Röhrig, A.; Al-Hourani, J.; Kunze, S.; Forkosh, J.; Wermelinger, J.; Messing-Jünger, M. Long-term results of minimally invasive strip craniectomy without helmet therapy for scaphocephaly—A single-centre experience. Neurosurg. Rev. 2024, 47, 164. [Google Scholar] [CrossRef]
- Hopper, R.A.; Nguyen, A.N.; Massenburg, B.B.; Lee, A.; Mercan, E. Direct occipital remodeling in sagittal synostosis improves 2-year posterior morphology after modified pi procedure. Plast. Reconstr. Surg. 2024, 154, 387–398. [Google Scholar]
- Pombo, J.N.; van Mourik Zoio, M.; Santos, M.M.; Faria, C.C.; Miguéns, J.; Guimarães-Ferreira, J. Metopic craniosynostosis: Dynamic cranioplasty for trigonocephaly versus fronto-orbital remodeling and advancement—A retrospective study. J. Cranio-Maxillofac. Surg. 2024, 52, 966–973. [Google Scholar] [CrossRef]
- Reshchikov, D.; Lopatin, A.; Kholin, A.; Yasonov, S.; Vasiliev, I.; Kugushev, A.Y. Diagnosis and treatment of sagittal craniosynostosis in children over 2 years of age. Head Neck Russ. J. 2020, 9, 1–10. [Google Scholar]
- Monte, T.M.; Denadai, R.; Raposo-Amaral, C.A.; Ghizoni, E.; Raposo-Amaral, C.E. Long-term morphologic changes on sagittal synostosis patients who underwent a modified pi technique. J. Craniofacial Surg. 2021, 32, 55–57. [Google Scholar] [CrossRef]
- Choudhary, A.; Edgar, M.; Raman, S.; Alkureishi, L.W.; Purnell, C.A. Craniometric and aesthetic outcomes in craniosynostosis surgery: A systematic review and meta-analysis. Cleft Palate Craniofacial J. 2023, 10556656231204506. [Google Scholar] [CrossRef] [PubMed]
- Di Rocco, F.; Knoll, B.I.; Arnaud, E.; Blanot, S.; Meyer, P.; Cuttarree, H.; Sainte-Rose, C.; Marchac, D. Scaphocephaly correction with retrocoronal and prelambdoid craniotomies (Renier’s “H” technique). Child’s Nerv. Syst. 2012, 28, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Spazzapan, P.; Velnar, T. Isolated Sagittal Craniosynostosis: A Comprehensive Review. Diagnostics 2024, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Le, M.-B.; Patel, K.; Skolnick, G.; Naidoo, S.; Smyth, M.; Kane, A.; Woo, A.S. Assessing long-term outcomes of open and endoscopic sagittal synostosis reconstruction using three-dimensional photography. J. Craniofacial Surg. 2014, 25, 573–576. [Google Scholar] [CrossRef]
- Jivraj, B.; Ahmed, N.; Karia, K.; Menon, R.; Robertson, E.; Sodha, A.; Wormald, J.; O’hara, J.; Jeelani, O.; Dunaway, D. A 24-month cost and outcome analysis comparing traditional fronto-orbital advancment and remodeling with endoscopic strip craniectomy and molding helmet in the management of unicoronal craniosynostosis: A retrospective bi-institutional review. JPRAS Open 2019, 20, 35–42. [Google Scholar] [CrossRef]
- Reardon, T.; Fiani, B.; Kosarchuk, J.; Parisi, A.; Shlobin, N.A. Management of lambdoid craniosynostosis: A comprehensive and systematic review. Pediatr. Neurosurg. 2022, 57, 1–16. [Google Scholar] [CrossRef]
- Boulos, P.T.; Lin, K.Y.; Jane, J.A. Correction of sagittal synostosis using a modified Π method. Clin. Plast. Surg. 2004, 31, 489–498. [Google Scholar] [CrossRef]
- Thompson, D.R.; Zurakowski, D.; Haberkern, C.M.; Stricker, P.A.; Meier, P.M. Endoscopic versus open repair for craniosynostosis in infants using propensity score matching to compare outcomes: A multicenter study from the Pediatric Craniofacial Collaborative Group. Anesth. Analg. 2018, 126, 968–975. [Google Scholar] [CrossRef]
- de Oliveira Junior, S.P.; Meira, D.A.; da Cunha, B.L.B.; Junior, J.H.M.F.; Pustilnik, H.N.; da Paz, M.G.D.S.; Araujo, T.B.; Junior, T.A.F.; Dourado, J.C.; de Avellar, L.M. Endoscopic surgery for craniosynostosis: A Systematic Review and Single-Arm Meta Analysis. Clin. Neurol. Neurosurg. 2024, 242, 108296. [Google Scholar] [CrossRef]
- Junn, A.H.; Long, A.S.; Hauc, S.C.; Almeida, M.N.; Alper, D.P.; Rivera, J.C.; Mayes, L.; Persing, J.A.; Alperovich, M. Long-term neurocognitive outcomes in 204 single-suture craniosynostosis patients. Child’s Nerv. Syst. 2023, 39, 1921–1928. [Google Scholar] [CrossRef]
- Sader, N.; Mehta, V.; Hart, S.; Bliss, L.; Moore, H.; DaSilva, M.; Rashid, R.; Riva-Cambrin, J. Quality of life and satisfaction in surgical versus conservative treatment of nonsyndromic children with craniosynostosis. J. Neurosurg. Pediatr. 2021, 29, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Riordan, C.P.; Zurakowski, D.; Meier, P.M.; Alexopoulos, G.; Meara, J.G.; Proctor, M.R.; Goobie, S.M. Minimally invasive endoscopic surgery for infantile craniosynostosis: A longitudinal cohort study. J. Pediatr. 2020, 216, 142–149.e142. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, D.A.; Gopal, S.; Gujjalanavar, R.; Deraje, V.; HR, S.; Ramamurthy, V. Endoscopic versus open cranial reconstruction surgery for anterior craniosynostosis: Experience from South-East Asia. FACE 2020, 1, 105–113. [Google Scholar] [CrossRef]
- Rochlin, D.H.; Sheckter, C.C.; Lorenz, H.P.; Khosla, R.K. Nationwide perioperative analysis of endoscopic versus open surgery for craniosynostosis: Equal access, unequal outcomes. J. Craniofacial Surg. 2021, 32, 149–153. [Google Scholar] [CrossRef]
Database | Keyword Combination | Hits |
---|---|---|
PubMed | allintitle: craniosynostosis cranioplasty OR suturectomy OR craniectomy OR remodeling OR reconstructive OR reconstruction OR distraction OR osteogenesis | 441 |
Scopus | TITLE ((craniosynostos * OR synostos * OR scaphocephaly OR (skull AND anomaly)) AND (cranioplasty OR suturectomy OR craniectomy OR remodeling OR reconstructi * OR (distraction AND osteogenesis))) | 471 |
WoS | (craniosynostosis OR synostosis OR scaphocephaly OR (skull anomaly)) AND (cranioplasty OR suturectomy OR craniectomy OR remodeling OR reconstructive OR reconstruction OR (distraction osteogenesis)) | 460 |
Scilit | (craniosynostosis OR synostosis OR scaphocephaly OR (skull anomaly)) AND (cranioplasty OR suturectomy OR craniectomy OR remodeling OR reconstructive OR reconstruction OR (distraction osteogenesis)) | 101 |
Author, Year [Ref.] | Surgical Technique | Characteristics | Affected Suture | Syndromic Status | Cephalic Index | ||
---|---|---|---|---|---|---|---|
n | Age (Month) | Gender (M/F) | |||||
Al-Shaqsi et al., 2021 [20] | CVR | 37 | 13.4 ± 19.2 | 30/7 | Sagittal | Mix | 79.3 ± 10 |
ES | 18 | 2.9 ± 2.8 | 14/23 | Sagittal | Mix | 74.1 ± 4.4 | |
Albuz et al., 2024 [21] | CVR | 24 | NR | NR | Mix | No | 76.2 ± 1.5 |
EC | 61 | NR | NR | Mix | No | 76.5 ± 1.5 | |
Skolnick et al., 2020 [34] | SAS | 27 | 4.5 ± 1.3 | 23/4 | Sagittal | No | 74.3 ± 4.2 |
EC | 40 | 3 ± 0.9 | 29/11 | Sagittal | No | 77 ± 3.8 | |
Magge et al., 2019 [35] | PiC | 21 | 5.1 ± 2.7 | NR | Sagittal | No | 0.7 ± 0.0 a |
EC | 30 | 3.1 ± 1.2 | NR | Sagittal | No | 0.8 ± 0.0 a | |
Taylor et al., 2011 [36] | SAS | 7 | 6.3 ± 0.7 | NR | NR | NR | 78.9 ± 1.8 |
SC | 7 | 5.6 ± 0.5 | NR | NR | NR | 78 ± 4 | |
Spazzapan et al., 2024 [37] | RH | 28 | 5.1 ± 1 | NR | Sagittal | No | 72.9 ± 1.5 |
CVR | 30 | NR | Sagittal | No | 74.4 ± 1.5 | ||
Windh et al., 2008 [39] | SAS | 20 | 3.5 ± 0.6 | 18/2 | Sagittal | No | 70.6 ± 3.7 |
PiP | 20 | 7.1 ± 1.4 | 16/4 | Sagittal | No | 73.4 ± 3.3 | |
Crofts et al., 2023 [38] | SC | 13 | 4.6 ± 1.3 | 8/5 | Sagittal | NR | 0.7 ± 0.0 a |
EC | 38 | 3.1 ± 0.2 | 28/10 | Sagittal | NR | 0.8 ± 0.0 a | |
Chi et al., 2022 [33] | CVR | 37 | 31.2 ± 17.0 | 35/8 | Sagittal | No | 74.6 ± 5.4 |
PiC | 6 | 6.5 ± 2.2 | Sagittal | No | 73.9 ± 5.2 |
Author, Year [Ref.] | Study Design | Selection | Comparability | Outcome | Total Score | Remark |
---|---|---|---|---|---|---|
Al-Shaqsi et al., 2021 [20] | Cross-sectional | ★★ | - | ★★★ | 5 | Medium risk |
Albuz et al., 2024 [21] | Cross-sectional | ★★★ | ★ | ★★★ | 7 | Low risk |
Skolnick et al., 2020 [34] | Cohort | ★★★ | ★ | ★★★ | 7 | Low risk |
Magge et al., 2019 [35] | Cross-sectional | ★★★ | ★ | ★★★ | 7 | Low risk |
Taylor et al., 2011 [36] | Case–control | ★★★ | ★ | ★★ | 6 | Medium risk |
Spazzapan et al., 2024 [37] | Cohort | ★★★ | ★★ | ★★★ | 8 | Low risk |
Windh et al., 2008 [39] | Cohort | ★★★ | ★★ | ★★★ | 8 | Low risk |
Crofts et al., 2023 [38] | Cohort | ★★ | ★ | ★★★ | 6 | Medium risk |
Chi et al., 2022 [33] | Cohort | ★★ | ★ | ★★ | 6 | Medium risk |
CVR | 0.23 (−5.47–5.63) | −0.59 (−6.07 to 4.94) | −1.16 (−8.89 to 6.35) | −0.07 (−9.27 to 8.79) | −0.96 (−6.62 to 4.53) | −0.86 (−8.25 to 6.18) | −1.79 (−9.05 to 5.28) |
EC | −0.79 (−8.57 to 7.19) | −1.36 (−6.85 to 4.20) | −0.31 (−7.29 to 7.08) | −1.20 (−9.14 to 6.88) | −1.09 (−5.54 to 3.54) | −2.01 (−6.46 to 2.65) | |
ES | −0.58 (−10.13 to 9.05) | 0.54 (−10.08 to 11.19) | −0.41 (−8.31 to 7.35) | −0.28 (−9.35 to 8.80) | −1.2 (−10.58 to 7.94) | ||
PiC | 1.07 (−7.84 to 10.31) | 0.19 (−9.20 to 9.66) | 0.26 (−6.66 to 7.41) | −0.65 (−7.67 to 6.44) | |||
PiP | −0.89 (−11.82 to 9.77) | −0.80 (−6.38 to 4.84) | −1.70 (−8.87 to 5.47) | ||||
RH | 0.09 (−9.04 to 9.44) | −0.82 (−9.82 to 8.42) | |||||
SAS | −0.882 (−5.26 to 3.75) | ||||||
SC |
Surgical Techniques | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 |
---|---|---|---|---|---|---|---|---|
CVR | 0.142 | 0.229 | 0.201 | 0.136 | 0.118 | 0.101 | 0.059 | 0.015 |
EC | 0.195 | 0.246 | 0.204 | 0.175 | 0.102 | 0.053 | 0.022 | 0.004 |
ES | 0.150 | 0.109 | 0.117 | 0.129 | 0.123 | 0.116 | 0.126 | 0.131 |
PiC | 0.082 | 0.077 | 0.083 | 0.109 | 0.141 | 0.138 | 0.186 | 0.184 |
PiP | 0.273 | 0.128 | 0.121 | 0.113 | 0.096 | 0.093 | 0.081 | 0.097 |
RH | 0.104 | 0.086 | 0.101 | 0.105 | 0.119 | 0.146 | 0.152 | 0.186 |
SAS | 0.029 | 0.088 | 0.118 | 0.155 | 0.187 | 0.208 | 0.157 | 0.058 |
SC | 0.026 | 0.037 | 0.056 | 0.079 | 0.115 | 0.146 | 0.217 | 0.326 |
Surgery | Key Features | Indication | Related Findings | Ref. |
---|---|---|---|---|
Open total cranial vault reconstruction | The procedure includes modifying and restructuring the bones of the skull to enlarge the intracranial space and fix the shape of the head. | Used for complicated or multi-suture craniosynostosis | Extensive skull remodeling, longer recovery time, but results in a comprehensive correction | [41] |
Endoscopic suturectomy | Small, minimally invasive incisions are performed to remove fused sutures, which are frequently followed by helmet treatment to reshape the skull. | Ideal for infant single-suture craniosynostosis | Less scarring and faster healing; limited usage in more complicated cases | [42] |
Endoscopy-assisted craniectomy | Endoscopic procedures are used with a minimally invasive approach to remove sections of the skull damaged by premature suture fusion. | Synostosis with a single suture performed in infants | Helmet treatment may be required following surgery for reshaping; minor blood loss is expected | [43] |
Spring-assisted surgery | Metal springs are implanted between the skull bones to progressively expand intracranial volume over time; the springs are then withdrawn. | Mild craniosynostosis and sagittal synostosis | Non-invasive postoperative repair; progressive skull reshaping | [44] |
Strip craniectomy with helmet | The procedure involves the removal of fused sutures in a thin strip, followed by helmet treatment to guide skull development. | Craniosynostosis with a single suture in infants | Reshaping process through helmet use is less invasive compared to full vault reconstruction and occurs gradually over time | [44] |
Pi craniectomy | To enhance head contour, a reshaping technique is performed to remove fused sutures and redesign the skull in the shape of the Greek letter “π”. | Sagittal synostosis | Corrects head shape and reduces the need for further procedures | [45] |
Pi plasty | This procedure is similar to Pi craniectomy but emphasizes creating more space in the fronto-orbital area and restoring normal skull shape. | Metopic synostosis or anterior plagiocephaly | Effective for contouring and expanding the frontal area, particularly in cases with anterior cranial deformities | [46] |
Renier’s “H” technique | The procedure of cranial vault reconstruction includes creating an incision in the shape of an “H” to enable the maximum expansion of the skull and achieve symmetrical reshaping. | Used in more complicated cases of craniosynostosis | Multiple-suture synostosis; symmetrical skull reshaping and expansion | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, M.I.A.; Amirsyah, M.; Budiman, B.; Amirah, S.; Al-Gunaid, S.T.; Iqhrammullah, M. Comparison of Surgical Techniques in Managing Craniosynostosis: Systematic Review and Bayesian Network Meta-Analysis. Surgeries 2024, 5, 970-985. https://doi.org/10.3390/surgeries5040078
Putra MIA, Amirsyah M, Budiman B, Amirah S, Al-Gunaid ST, Iqhrammullah M. Comparison of Surgical Techniques in Managing Craniosynostosis: Systematic Review and Bayesian Network Meta-Analysis. Surgeries. 2024; 5(4):970-985. https://doi.org/10.3390/surgeries5040078
Chicago/Turabian StylePutra, Muhammad Ikhlas Abdian, Mirnasari Amirsyah, Budiman Budiman, Shakira Amirah, Seba Talat Al-Gunaid, and Muhammad Iqhrammullah. 2024. "Comparison of Surgical Techniques in Managing Craniosynostosis: Systematic Review and Bayesian Network Meta-Analysis" Surgeries 5, no. 4: 970-985. https://doi.org/10.3390/surgeries5040078
APA StylePutra, M. I. A., Amirsyah, M., Budiman, B., Amirah, S., Al-Gunaid, S. T., & Iqhrammullah, M. (2024). Comparison of Surgical Techniques in Managing Craniosynostosis: Systematic Review and Bayesian Network Meta-Analysis. Surgeries, 5(4), 970-985. https://doi.org/10.3390/surgeries5040078