Oral Wound Healing in Aging Population
Abstract
:1. Introduction
- The first phase consists of hemorrhage and initiation of the coagulation cascade, involving the formation of immediate platelets;
- The second phase involves inflammation at the wounded site, with migration of inflammatory cells;
- The third phase consists of migration and proliferation of keratinocytes, endothelial cells, fibroblasts, angiogenesis, phagocytosis, and matrix synthesis with complete wound closure;
- The fourth phase is maturation, which involves tissue remodeling and reorganization.
2. Impact of Aging on Oral Wound Healing
3. Hormonal Changes and Genetics
4. Multimorbidity and Polypharmacy
5. Oral Microbiota
6. Nutrition
7. Suggestions for Future Research
8. Limitation of the Study
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470443/ (accessed on 12 June 2023).
- Nikoloudaki, G.; Creber, K.; Hamilton, D.W. Wound healing and fibrosis: A contrasting role for periostin in skin and the oral mucosa. Am. J. Physiol. Cell Physiol. 2020, 318, C1065–C1077. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, L.; Uitto, V.J.; Larjava, H. Cell biology of gingival wound healing. Periodontology 2000 2000, 24, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Leng, C.; Lau, M.; Choi, K.; Wang, R.; Zeng, Y.; Chen, T.; Zhang, C.; Li, Z. Precise healing of oral and maxillofacial wounds: Tissue engineering strategies and their associated mechanisms. Front. Bioeng. Biotechnol. 2024, 12, 1375784. [Google Scholar] [CrossRef] [PubMed]
- Waasdorp, M.; Krom, B.P.; Bikker, F.J.; van Zuijlen, P.P.M.; Niessen, F.B.; Gibbs, S. The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules 2021, 11, 1165. [Google Scholar] [CrossRef]
- Pereira, D.; Sequeira, I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa with Skin and Oesophagus. Front. Cell Dev. Biol. 2021, 9, 682143. [Google Scholar] [CrossRef]
- Chiquet, M.; Katsaros, C.; Kletsas, D. The multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair. Periodontology 2000 2015, 68, 21–40. [Google Scholar] [CrossRef]
- Ko, K.I.; Sculean, A.; Graves, D.T. Diabetic wound healing in soft and hard oral tissues. Transl. Res. J. Lab. Clin. Med. 2021, 236, 72–86. [Google Scholar] [CrossRef]
- Toma, A.I.; Fuller, J.M.; Willett, N.J.; Goudy, S.L. Oral wound healing models and emerging regenerative therapies. Transl. Res. 2021, 236, 17–34. [Google Scholar] [CrossRef]
- Sousounis, K.; Baddour, J.A.; Tsonis, P.A. Aging and regeneration in vertebrates. Curr. Top. Dev. Biol. 2014, 108, 217–246. [Google Scholar]
- Chang, C.H.; Lee, K.Y.; Shim, Y.H. Normal aging: Definition and physiologic changes. J. Korean Med. Assoc. 2017, 60, 358–363. [Google Scholar] [CrossRef]
- Guiglia, R.; Musciotto, A.; Compilato, D.; Procaccini, M.; Lo Russo, L.; Ciavarella, D.; Lo Muzio, L.; Cannone, V.; Pepe, I.; D’Angelo, M.; et al. Aging and oral health: Effects in hard and soft tissues. Curr. Pharm. Des. 2010, 16, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Martu, M.A.; Maftei, G.A.; Luchian, I.; Popa, C.; Filioreanu, A.M.; Tatarciuc, D.; Nichitean, G.; Hurjui, L.L.; Foia, L.G. Wound healing of periodontal and oral tissues: Part II—Patho-phisiological conditions and metabolic diseases. Rom. J. Oral Rehabil. 2020, 12, 30–40. [Google Scholar]
- Brown, M.A.; Thomas, B.; Blake, K. Oral Health and Ageing: A Literature Review. West Indian Med. J. 2018, 67, 475. [Google Scholar]
- Ripszky Totan, A.; Greabu, M.; Stanescu-Spinu, I.I.; Imre, M.; Spinu, T.C.; Miricescu, D.; Ilinca, R.; Coculescu, E.C.; Badoiu, S.C.; Coculescu, B.I.; et al. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221125090. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Mills, S.J.; Ashworth, J.J. Ageing and wound healing. Biogerontology 2002, 3, 337–345. [Google Scholar] [CrossRef]
- Zhao, P.; Sui, B.D.; Liu, N.; Lv, Y.J.; Zheng, C.X.; Lu, Y.B.; Huang, W.T.; Zhou, C.H.; Chen, J.; Pang, D.L.; et al. Anti-aging pharmacology in cutaneous wound healing: Effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017, 16, 1083–1093. [Google Scholar] [CrossRef]
- Grusovin, M.G. The Treatment of Periodontal Diseases in Elderly Patients. In Oral Rehabilitation for Compromised and Elderly Patients; Springer: Cham, Switzerland, 2019; pp. 29–47. [Google Scholar]
- Martu, S.; Amalinei, C.; Tatarciuc, M.; Rotaru, M.; Potarnichie, O.; Liliac, L.; Caruntu, I.D. Healing process and laser therapy in the superficial periodontium: A histological study. Rom. J. Morphol. Embryol. 2012, 53, 3–6. [Google Scholar]
- Andreescu, C.F.; Mihai, L.L.; Răescu, M.; Tuculină, M.J.; Cumpătă, C.N.; Ghergic, D.L. Age influence on periodontal tissues: A histological study. Rom. J. Morphol. Embryol. 2013, 54 (Suppl. S3), 811–815. [Google Scholar] [PubMed]
- Luo, C.; Nakagawa, M.; Sumi, Y.; Matsushima, Y.; Uemura, M.; Honda, Y.; Matsumoto, N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent. Mater. J. 2024, 43, 430–436. [Google Scholar] [CrossRef]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef]
- Dragomirescu, A.-O.; Bencze, M.-A.; Vasilache, A.; Teodorescu, E.; Albu, C.-C.; Popoviciu, N.O.; Ionescu, E. Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study. Materials 2022, 15, 2640. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, M.; Oyarzun, A.; Smith, P.C. Defective Wound-healing in Aging Gingival Tissue. J. Dent. Res. 2014, 93, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Saldías, M.P.; Fernández, C.; Morgan, A.; Díaz, C.; Morales, D.; Jaña, F.; Gómez, A.; Silva, A.; Briceño, F.; Oyarzún, A.; et al. Aged blood factors decrease cellular responses associated with delayed gingival wound repair. PLoS ONE 2017, 12, e0184189. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, V.; Garrido, M.; Reyes, A.; Fernández, C.; Diaz, C.; Torres, V.A.; González, P.A.; Cáceres, M. Aging envisage imbalance of the periodontium: A keystone in oral disease and systemic health. Front. Immunol. 2022, 13, 1044334. [Google Scholar] [CrossRef] [PubMed]
- Chaushu, L.; Atzil, S.; Vered, M.; Chaushu, G.; Matalon, S.; Weinberg, E. Age-Related Palatal Wound Healing: An Experimental In Vivo Study. Biology 2021, 10, 240. [Google Scholar] [CrossRef]
- Rêgo, A.d.S.; Furtado, G.E.; Bernardes, R.A.; Santos-Costa, P.; Dias, R.A.; Alves, F.S.; Ainla, A.; Arruda, L.M.; Moreira, I.P.; Bessa, J.; et al. Development of Smart Clothing to Prevent Pressure Injuries in Bedridden Persons and/or with Severely Impaired Mobility: 4NoPressure Research Protocol. Healthcare 2023, 11, 1361. [Google Scholar] [CrossRef]
- Engeland, C.G.; Sabzehei, B.; Marucha, P.T. Sex Hormones and Mucosal Wound Healing. Brain Behav. Immun. 2009, 23, 629–635. [Google Scholar] [CrossRef]
- Gould, L.; Abadir, P.; Brem, H.; Carter, M.; Conner-Kerr, T.; Davidson, J.; DiPietro, L.; Falanga, V.; Fife, C.; Gardner, S.; et al. Chronic wound repair and healing in older adults: Current status and future research. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2015, 23, 1–13. [Google Scholar]
- Albu, C.C.; Albu, D.F.; Muşat, A.R.; Stancu, I.G.; Albu, Ş.D.; Pătraşcu, A.; Gogănău, A.M. The crucial role of SRY gene in the determination of human genetic sex: 46,XX disorder of sex development. Rom. J. Morphol. Embryol. 2019, 60, 1311–1316. [Google Scholar]
- Horng, H.-C.; Chang, W.-H.; Yeh, C.-C.; Huang, B.-S.; Chang, C.-P.; Chen, Y.-J.; Tsui, K.-H.; Wang, P.-H. Estrogen Effects on Wound Healing. Int. J. Mol. Sci. 2017, 18, 2325. [Google Scholar] [CrossRef]
- Boyapati, R.; Cherukuri, S.A.; Bodduru, R.; Kiranmaye, A. Influence of Female Sex Hormones in Different Stages of Women on Periodontium. J. Mid-Life Health 2021, 12, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Wulandari, P. Effect of Hypoestrogenism on Oral Cavity. In Estrogens—Recent Advances; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Albandar, J.M.; Susin, C.; Hughes, F.J. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J. Periodontol. 2018, 89 (Suppl. S1), S183–S203. [Google Scholar] [CrossRef] [PubMed]
- Čoma, M.; Lachová, V.; Mitrengová, P.; Gál, P. Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review. Curr. Issues Mol. Biol. 2021, 43, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000 2014, 64, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tian, W.; Pan, H.; Zhu, X.; Wang, J.; Cheng, Z.; Cheng, L.; Ma, X.; Wang, B. Variations of the COL1A1 Gene Promoter and the Relation to Developmental Dysplasia of the Hip. Genet. Test. Mol. Biomarkers 2013, 17, 840–843. [Google Scholar] [CrossRef]
- Musacchio, E.; Binotto, P.; Silva-Netto, F.; Perissinotto, E.; Sartori, L. Bone-related polymorphisms and dental status in older men and women. Results of the longitudinal Pro.V.A. study. J. Dent. Sci. 2022, 17, 528–534. [Google Scholar] [CrossRef]
- Masamatti, S.S.; Kumar, A.; Baron, T.K.; Mehta, D.S.; Bhat, K. Evaluation of interleukin -1B (+3954) gene polymorphism in patients with chronic and aggressive periodontitis: A genetic association study. Contemp. Clin. Dent. 2012, 3, 144–149. [Google Scholar] [CrossRef]
- Albu, C.-C.; Bencze, M.-A.; Dragomirescu, A.-O.; Suciu, I.; Tănase, M.; Albu, Ş.-D.; Russu, E.-A.; Ionescu, E. Folic Acid and Its Role in Oral Health: A Narrative Review. Processes 2023, 11, 1994. [Google Scholar] [CrossRef]
- Caley, M.P.; Martins, V.L.; O’Toole, E.A. Metalloproteinases and Wound Healing. Adv. Wound Care 2015, 4, 225–234. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Liao, Y.; Yang, B.; Zhang, J. Association between tumor necrosis factor polymorphisms and rheumatoid arthritis as well as systemic lupus erythematosus: A meta-analysis. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Med. Biol. 2019, 52, e7927. [Google Scholar] [CrossRef]
- Aliyu, M.; Zohora, F.T.; Anka, A.U.; Ali, K.; Maleknia, S.; Saffarioun, M.; Azizi, G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int. Immunopharmacol. 2022, 111, 109130. [Google Scholar] [CrossRef] [PubMed]
- Gordts, S.C.; Muthuramu, I.; Amin, R.; Jacobs, F.; De Geest, B. The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals 2014, 7, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Starzyńska, A.; Wychowański, P.; Nowak, M.; Sobocki, B.K.; Jereczek-Fossa, B.A.; Słupecka-Ziemilska, M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int. J. Mol. Sci. 2022, 23, 2473. [Google Scholar] [CrossRef] [PubMed]
- McNestry, C.; Killeen, S.L.; Crowley, R.K.; McAuliffe, F.M. Pregnancy complications and later life women’s health. Acta Obstet. Gynecol. Scand. 2023, 102, 523–531. [Google Scholar] [CrossRef]
- Văduva, C.C.; Constantinescu, C.; Ţenovici, M.; Văduva, A.R.; Niculescu, M.; Dițescu, D.; Albu, C.C.; Albu, D.F. Delayed Interval De-livery in Twin Pregnancy—Case Reports. Rom. J. Morphol. Embryol. 2016, 57, 1089–1098. [Google Scholar]
- Albu, C.; Cilievici, S.E.; Albu, D.; Albu, S.; Patrascu, A.; Goganau, A.M. Impact of Material Serum Screening in Early Prenatal Diagnosis and Management of Congenital Anomalies. Rev. Chim. 2019, 70, 1534–1538. [Google Scholar] [CrossRef]
- Kristensen, C.B.; Ide, M.; Forbes, A.; Asimakopoulou, K. Psychologically informed oral health interventions in pregnancy and type 2 diabetes: A scoping review. Front. Oral Health 2022, 3, 1068905. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.S.; Carreón-Torres, E.; Correa-Solís, E.; Ángel-García, J.; Arias-Rico, J.; Jiménez-Garza, O.; Morales-Castillejos, L.; Díaz-Zuleta, H.A.; Baltazar-Tellez, R.M.; Sánchez-Padilla, M.L.; et al. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants 2023, 12, 1894. [Google Scholar] [CrossRef]
- Wicklow, B.; Retnakaran, R. Gestational Diabetes Mellitus and Its Implications across the Life Span. Diabetes Metab. J. 2023, 47, 333f–344f. [Google Scholar] [CrossRef]
- Sheiner, E. Gestational Diabetes Mellitus: Long-Term Consequences for the Mother and Child Grand Challenge: How to Move on Towards Secondary Prevention? Front. Clin. Diabetes Healthc. 2020, 1, 546256. [Google Scholar] [CrossRef]
- Khan, I.; Arany, P. Biophysical Approaches for Oral Wound Healing: Emphasis on Photobiomodulation. Adv. Wound Care 2015, 4, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, Y.; Liu, C.; Wu, Y.; Wan, Z.; Shen, D. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front. Endocrinol. 2022, 13, 949535. [Google Scholar] [CrossRef]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.; Luo, Z.; Singh, K. Diabetic complications and prospective immunotherapy. Front. Immunol. 2023, 14, 1219598. [Google Scholar] [CrossRef] [PubMed]
- De Simone, B.; Chouillard, E.; Podda, M.; Pararas, N.; de Carvalho Duarte, G.; Fugazzola, P.; Birindelli, A.; Coccolini, F.; Polistena, A.; Sibilla, M.G.; et al. The 2023 WSES guidelines on the management of trauma in elderly and frail patients. World J. Emerg. Surg. 2024, 19, 18. [Google Scholar] [CrossRef]
- Harris, C.L.; Fraser, C. Malnutrition in the institutionalized elderly: The effects on wound healing. Ostomy Wound Manag. 2004, 50, 54–63. [Google Scholar]
- Perrella, L.; Mucherino, S.; Casula, M.; Illario, M.; Orlando, V.; Menditto, E. Polypharmacy Management in Chronic Conditions: A Systematic Literature Review of Italian Interventions. J. Clin. Med. 2024, 13, 3529. [Google Scholar] [CrossRef]
- Astor, F.C.; Hanft, K.L.; Ciocon, J.O. Xerostomia: A prevalent condition in the elderly. Ear Nose Throat J. 1999, 78, 476–479. [Google Scholar] [CrossRef]
- Langari, S.F.; Hosseini, S.R.; Bijani, A.; Jenabian, N.; Motalebnejad, M.; Mahmoodi, E.; Madani, Z.S.; Sayadi, F.; Naghibi Sistani, M.; Ghadimi, R.; et al. Association between antihypertensive drugs and the elderly’s oral health- related quality of life: Results of Amirkola cohort study. Casp. J. Intern. Med. 2022, 13, 582–588. [Google Scholar]
- Ramírez, L.; Sánchez, I.; Muñoz, M.; Martínez-Acitores, M.L.; Garrido, E.; Hernández, G.; López-Pintor, R.M. Risk factors associated with xerostomia and reduced salivary flow in hypertensive patients. Oral Dis. 2023, 29, 1299–1311. [Google Scholar] [CrossRef]
- Ito, K.; Izumi, N.; Funayama, S.; Nohno, K.; Katsura, K.; Kaneko, N.; Inoue, M. Characteristics of medication-induced xerostomia and effect of treatment. PLoS ONE 2023, 18, e0280224. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Cusick, A.S.; Thielemier, B. ACE Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430896/ (accessed on 26 June 2023).
- Saleh, J.; Figueiredo, M.A.; Cherubini, K.; Salum, F.G. Salivary hypofunction: An update on aetiology, diagnosis and therapeutics. Arch. Oral Biol. 2015, 60, 242–255. [Google Scholar] [CrossRef] [PubMed]
- López-Pintor, R.M.; Ramírez Martínez-Acitores, L.; Serrano Valle, J.; González-Serrano, J.; Casañas, E.; de Arriba, L.; Hernández, G. Xerostomia and hyposalivation. In Oral Health and Aging; Springer International Publishing: Cham, Switzerland, 2022; pp. 85–108. [Google Scholar]
- Oneto, P.; Zubiry, P.R.; Schattner, M.; Etulain, J. Anticoagulants Interfere with the Angiogenic and Regenerative Responses Mediated by Platelets. Front. Bioeng. Biotechnol. 2020, 8, 223. [Google Scholar] [CrossRef]
- Bettschen, D.; Tsichlaki, D.; Chatzimichail, E.; Klukowska-Rotzler, L.; Muller, M.; Sauter, T.C.; Exadaktylos, A.K.; Ziaka, M.; Doulberis, M.; Burkhard, J.P. Epidemiology of maxillofacial trauma in elderly patients receiving oral anticoagulant or antithrombotic medication; a Swiss retrospective study. BMC Emerg. Med. 2024, 24, 121. [Google Scholar] [CrossRef] [PubMed]
- Janahi, I.A.; Rehman, A.; Baloch, N.U.A. Corticosteroids and their use in respiratory disorders. In Corticosteroids; InTech Open: London, UK, 2018; pp. 47–57. [Google Scholar]
- Luttrell, T. Trauma and Inflammation of Soft Tissue: Rehabilitation and Wound Healing and Remodeling of Collagen. In Foundations of Orthopedic Physical Therapy; Routledge: New York, NY, USA, 2024; pp. 2–37. [Google Scholar]
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef]
- Han, N.; Jia, L.; Guo, L.; Su, Y.; Luo, Z.; Du, J.; Mei, S.; Liu, Y. Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Res. Ther. 2020, 11, 61. [Google Scholar] [CrossRef]
- Su, Y.; Chen, C.; Guo, L.; Du, J.; Li, X.; Liu, Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018, 36, 551–561. [Google Scholar] [CrossRef]
- Graves, D.T.; Corrêa, J.D.; Silva, T.A. The Oral Microbiota Is Modified by Systemic Diseases. J. Dent. Res. 2019, 98, 148–156. [Google Scholar] [CrossRef]
- Katagiri, S.; Shiba, T.; Tohara, H.; Yamaguchi, K.; Hara, K.; Nakagawa, K.; Komatsu, K.; Watanabe, K.; Ohsugi, Y.; Maekawa, S.; et al. Re-initiation of Oral Food Intake Following Enteral Nutrition Alters Oral and Gut Microbiota Communities. Front. Cell. Infect. Microbiol. 2019, 9, 434. [Google Scholar] [CrossRef]
- Santonocito, S.; Giudice, A.; Polizzi, A.; Troiano, G.; Merlo, E.M.; Sclafani, R.; Grosso, G.; Isola, G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients 2022, 14, 2426. [Google Scholar] [CrossRef]
- Defta, C.L.; Albu, C.-C.; Albu, Ş.-D.; Bogdan-Andreescu, C.F. Oral Mycobiota: A Narrative Review. Dent. J. 2024, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Hirose, Y.; Honda-Ogawa, M.; Sugimoto, M.; Sasaki, S.; Kibi, M.; Kawabata, S.; Ikebe, K.; Maeda, Y. Composition of salivary microbiota in elderly subjects. Sci. Rep. 2018, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Ku, E.N.; Tsai, P.F.; Lin, C.W.; Ko, N.Y.; Huang, S.T.; Wang, J.L.; Yang, Y.C. The relationship between oral frailty and oral dysbiosis among hospitalized patients aged older than 50 years. Clin. Exp. Dent. Res. 2024, 10, e890. [Google Scholar] [CrossRef] [PubMed]
- Bănică, A.C.; Popescu, S.M.; Mercuţ, V.; Busuioc, C.J.; Gheorghe, A.G.; Traşcă, D.M.; Brăila, A.D.; Moraru, A.I. Histological and immunohistochemical study on the apical granuloma. Rom. J. Morphol. Embryol. 2018, 59, 811–817. [Google Scholar]
- Sarafidou, K.; Alexakou, E.; Talioti, E.; Bakopoulou, A.; Anastassiadou, V. The oral microbiome in older adults—A state-of-the-art review. Arch. Gerontol. Geriatr. Plus 2024, 1, 100061. [Google Scholar] [CrossRef]
- Zakaria, M.; Furuta, M.; Takeshita, T.; Shibata, Y.; Sundari, R.; Eshima, N.; Ninomiya, T.; Yamashita, Y. Oral mycobiome in community-dwelling elderly and its relation to oral and general health conditions. Oral Dis. 2017, 23, 973–982. [Google Scholar] [CrossRef]
- Wells, P.M.; Sprockett, D.D.; Bowyer, R.C.E.; Kurushima, Y.; Relman, D.A.; Williams, F.M.K.; Steves, C.J. Influential factors of saliva microbiota composition. Sci. Rep. 2022, 12, 18894. [Google Scholar] [CrossRef]
- Kazarina, A.; Kuzmicka, J.; Bortkevica, S.; Zayakin, P.; Kimsis, J.; Igumnova, V.; Sadovska, D.; Freimane, L.; Kivrane, A.; Namina, A.; et al. Oral microbiome variations related to ageing: Possible implications beyond oral health. Arch. Microbiol. 2023, 205, 116. [Google Scholar] [CrossRef]
- DeClercq, V.; Wright, R.J.; Nearing, J.T.; Langille, M.G.I. Oral microbial signatures associated with age and frailty in Canadian adults. Sci. Rep. 2024, 14, 9685. [Google Scholar] [CrossRef]
- Asakawa, M.; Kageyama, S.; Said, H.S.; Ma, J.; Suma, S.; Furuta, M.; Takeshita, T. Association of oral fungal profiles with health status and bacterial composition in elderly adults receiving community support and home care service. Appl. Environ. Microbiol. 2024, 90, e0085724, Advance online publication. [Google Scholar] [CrossRef]
- Scardina, G.A.; Messina, P. Good Oral Health and Diet. J. Biomed. Biotechnol. 2012, 2012, 720692. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.K.; Stampas, A.; Kerr, K.W.; Nelson, J.L.; Sulo, S.; Leon-Novelo, L.; Ngan, E.; Pandya, D. Evaluating the impact of using a wound-specific oral nutritional supplement to support wound healing in a rehabilitation setting. Int. Wound J. 2023, 20, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Siregar, F.D.; Hidayat, W. The Role of Vitamin D on the Wound Healing Process: A Case Series. Int. Med. Case Rep. J. 2023, 16, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.J.; Kho, H.S. Oral Manifestations in Vitamin B12 Deficiency Patients with or without History of Gastrectomy. BMC Oral Health 2016, 16, 60. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Xiong, Y.; Panayi, A.C.; Abududilibaier, A.; Hu, Y.; Yu, C.; Zhou, W.; Sun, Y.; Liu, M.; et al. Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 707479. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Ciocia, A.M.; Netti, A.; Viapiano, F.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Inchingolo, A.D.; Dipalma, G.; et al. Benefits of Natural Antioxidants on Oral Health. Antioxidants 2023, 12, 1309. [Google Scholar] [CrossRef]
- Tang, S.; Ruan, Z.; Ma, A.; Wang, D.; Kou, J. Effect of Vitamin K on Wound Healing: A Systematic Review and Meta-Analysis Based on Preclinical Studies. Front. Pharmacol. 2022, 13, 1063349. [Google Scholar] [CrossRef]
- Subramaniam, T.; Fauzi, M.B.; Lokanathan, Y.; Law, J.X. The Role of Calcium in Wound Healing. Int. J. Mol. Sci. 2021, 22, 6486. [Google Scholar] [CrossRef]
- Jawed, M.; Al Abdulmonem, W.; Alkhamiss, A.; Alghsham, R.; Alsaeed, T.; Alhumaydhi, F.A.; Hershan, A.A.; Shahid, S.M. Role of Serum Magnesium in Dental Caries. Bahrain Med. Bull. 2021, 43, 327–330. [Google Scholar]
- Afzali, H.; Jafari Kashi, A.H.; Momen-Heravi, M.; Razzaghi, R.; Amirani, E.; Bahmani, F.; Gilasi, H.R.; Asemi, Z. The Effects of Magnesium and Vitamin E Co-Supplementation on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer. Wound Repair Regen. 2019, 27, 277–284. [Google Scholar] [CrossRef]
- Kogan, S.; Sood, A.; Garnick, M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds 2017, 29, 102–106. [Google Scholar]
- Dell’Olio, F.; Siciliani, R.A.; Novielli, G.; Tempesta, A.; Favia, G.; Limongelli, L. The Effect of a Zinc-L-Carnosine Mouthwash in the Management of Oral Surgical Wounds: Preliminary Results of a Prospective Cohort Study. Dent. J. 2023, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.W.; Supp, D.M. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection. Adv. Wound Care 2014, 3, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Van Ravensteijn, M.M.; Timmerman, M.F.; Brouwer, E.A.G.; Slot, D.E. The Effect of Omega-3 Fatty Acids on Active Periodontal Therapy: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2022, 49, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Tomofuji, T.; Kawabata, Y.; Ekuni, D.; Azuma, T.; Kataoka, K.; Kunitomo, M.; Morita, M. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats. Nutrients 2014, 6, 5756–5769. [Google Scholar] [CrossRef] [PubMed]
- Manthena, S.; Rao, M.V.; Penubolu, L.P.; Putcha, M.; Harsha, A.V. Effectiveness of CoQ10 Oral Supplements as an Adjunct to Scaling and Root Planing in Improving Periodontal Health. J. Clin. Diagn. Res. 2015, 9, ZC26–ZC28. [Google Scholar] [CrossRef]
- Santo, A.C.S.D.E.; Sugizaki, C.S.A.; de Morais Junior, A.C.; Costa, N.A.; Bachion, M.M.; Mota, J.F. Impact of Oral Nutritional Supplement Composition on Healing of Different Chronic Wounds: A Systematic Review. Nutrition 2024, 124, 112449. [Google Scholar] [CrossRef]
- Canesso, M.C.C.; Cassini-Vieira, P.; Moreira, C.F.; Luong, S.; Rachid, M.A.; Martins, F.S.; Teixeira, M.M.; Vieira, A.T.; Mackay, C.R.; Barcelos, L.S. Dietary Fiber Improves Skin Wound Healing and Scar Formation through the Metabolite-Sensing Receptor GPR43. J. Investig. Dermatol. 2023, 143, 1850–1854.e6. [Google Scholar] [CrossRef]
- Togo, C.; Zidorio, A.P.; Gonçalves, V.; Botelho, P.; de Carvalho, K.; Dutra, E. Does Probiotic Consumption Enhance Wound Healing? A Systematic Review. Nutrients 2021, 14, 111. [Google Scholar] [CrossRef]
- Shuai, X.; Kang, N.; Li, Y.; Bai, M.; Zhou, X.; Zhang, Y.; Lin, W.; Li, H.; Liu, C.; Lin, H.; et al. Recombination Humanized Type III Collagen Promotes Oral Ulcer Healing. Oral Dis. 2024, 30, 1286–1295. [Google Scholar] [CrossRef]
- Bagheri Miyab, K.; Alipoor, E.; Vaghardoost, R.; Saberi Isfeedvajani, M.; Yaseri, M.; Djafarian, K.; Hosseinzadeh-Attar, M.J. The Effect of a Hydrolyzed Collagen-Based Supplement on Wound Healing in Patients with Burn: A Randomized Double-Blind Pilot Clinical Trial. Burns 2020, 46, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A. Beneficial Long-Term Effects of Combined Oral/Topical Antioxidant Treatment with the Carotenoids Lutein and Zeaxanthin on Human Skin: A Double-Blind, Placebo-Controlled Study. Ski. Pharmacol. Physiol. 2007, 20, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Enășescu, D.A.; Moisescu, M.G.; Imre, M.; Greabu, M.; Ripszky Totan, A.; Stanescu-Spinu, I.; Burcea, M.; Albu, C.; Miricescu, D. Lutein Treatment Effects on the Redox Status and Metalloproteinase-9 (MMP-9) in Oral Cancer Squamous Cells—Are There Therapeutical Hopes? Materials 2021, 14, 2968. [Google Scholar] [CrossRef] [PubMed]
Genetic Polymorphism | Gene | Associated Function | Mechanism | Impact on Oral Wound Healing | Reference |
---|---|---|---|---|---|
COL1A1 +1245G/T | COL1A1 | Type I Collagen Production | Polymorphism affects collagen fibril formation, leading to weaker collagen fibers. | Reduced collagen synthesis impairs wound healing and increases susceptibility to periodontal disease. | [26,38] |
IL-1β +3954C/T | IL-1β | Pro-inflammatory Cytokine | Increases IL-1β expression, amplifying the inflammatory response and promoting tissue destruction. | Exaggerated inflammation contributes to alveolar bone destruction and slower healing. | [40,41] |
MMP-1 -1607 1G/2G | MMP-1 | Matrix Metalloproteinase Activity | Enhances MMP-1 expression, increasing extracellular matrix (ECM) degradation. | Increased ECM breakdown delays wound healing and accelerates periodontal tissue destruction. | [42] |
TNF-α -308G/A | TNF-α | Pro-inflammatory Cytokine | Leads to higher TNF-α production, heightening inflammatory responses and tissue damage. | Increased inflammation slows healing and causes more extensive tissue damage. | [43] |
IL-6 -174G/C | IL-6 | Pro-inflammatory Cytokine | Alters IL-6 expression, affecting inflammation and interaction with tissue inhibitors of metalloproteinases (TIMPs). | Imbalanced inflammation reduces healing efficiency and increases chronic oral infections. | [41,44] |
MMP-9 -1562C/T | MMP-9 | Matrix Metalloproteinase Activity | Increases MMP-9 expression, leading to excessive ECM degradation. | Excessive ECM breakdown delays wound closure and worsens tissue destruction in periodontal disease. | [42] |
APOE ε4 | APOE | Apolipoprotein E Production | Impairs lipid metabolism and promotes inflammation. | Impaired tissue repair and increased inflammation result in prolonged healing and greater risk of periodontal disease. | [45] |
Targeted Group | Microbiome Changes | Influence on Oral Health and Wound Healing | Reference |
---|---|---|---|
75–99 years of age community-dwelling healthy elderly | Significant association between denture use and increased fungal load in saliva, especially in complete denture wearers. | The denture appliance restricts the cleansing action of the tongue and saliva, which are part of the host defense mechanism.Oral candidiasis has been associated with hyposalivation, which promote an unhealthy oral environment. | [83] |
Elderly living in nursing homes and healthy controls | Oral samples obtained from the present nursing home residents showed greater levels of Selenomonas, Veillonella, and Haemophilus, and lower levels of Fusobacterium. | Frailty is associated with oral microbiota formation and composition. | [79] |
38–80 years | Younger participants were more likely to have a similar microbiota composition, whereas older participants demonstrated wider difference. | Salivary microbiota was associated with age and frailty. | [84] |
Three age groups 20–40; 40–60; 60+ years | Low bacterial diversity with aging.Commensal Neisseria had declined after the age of 40. Opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age. | Prone to disease formation in the oral cavity as well as in distant body sites. | [85] |
35–70 years | Changes in microbiota with age.The abundance of Veillonella was reduced in both males and females, whereas increases in Corynebacterium appeared specific to males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to females. | Age and frailty are differentially associated with measures of microbial diversity and composition. | [86] |
Elderly adults receiving community support and home care service | High-density fungal population co-occurs with poor oral and systemic health status. | Dysbiosis of the bacterial community, and the overgrowth of non-albicans Candida species might worsening oral and systemic health. | [87] |
Food Ingredient | Health Benefits | Impact on Oral Wound Healing | Reference |
---|---|---|---|
Vitamins | |||
Vitamin D | Supports calcium absorption and bone health. | Enhances wound healing by interacting with the vitamin D receptor and maintaining healthy gums. | [90] |
Vitamin B12 | Maintains energy levels and cognitive function. | Deficiency can impair tissue regeneration, leading to conditions like glossitis and mouth sores. | [91] |
Vitamin C | Provides antioxidant properties and supports immune health. | Crucial for gum health and promotes collagen synthesis, essential for effective wound healing. | [92] |
Vitamin E | Acts as an antioxidant and supports immune function. | Antioxidant properties help in healing wounds and reducing inflammation, particularly in diabetics. | [93] |
Vitamin K | Supports blood clotting and bone health. | Plays a critical role in wound healing by promoting proper clot formation and tissue regeneration. | [94] |
Minerals and Elements | |||
Calcium | Maintains bone density and prevents osteoporosis. | Vital for normal skin physiology, tissue regeneration, and enamel quality, supporting wound healing. | [95] |
Magnesium | Supports muscle and nerve function and bone health. | Improves wound healing and helps prevent tooth decay and periodontal disease. | [96,97] |
Zinc | Supports immune function and wound healing. | Essential for healing oral wounds and maintaining gum health, aiding recovery after oral surgery. | [98,99] |
Fatty Acids and Antioxidants | |||
Omega-3 Fatty Acids | Reduces inflammation and supports cardiovascular health. | Enhances wound healing by reducing inflammation and improving gum health. | [100,101] |
Coenzyme Q10 (CoQ10) | Supports cellular energy production and cardiovascular health. | Reduces gingival inflammation and accelerates healing after tooth extractions. | [102,103] |
Proteins and Fibers | |||
Proteins | Maintains muscle mass and supports overall health. | Crucial for tissue repair and chronic wound healing; deficiency affects gum and teeth health. | [104] |
Fibers | Aids digestion and prevents constipation. | Supports oral hygiene by cleaning teeth naturally and contributes to improved wound healing. | [105] |
Other Important Ingredients | |||
Probiotics | Supports gut health and modulates immune function. | Enhances oral wound healing by balancing the oral microbiota and reducing inflammation. | [106] |
Collagen | Supports joint health and skin elasticity. | Promotes oral tissue integrity and aids in wound healing by maintaining gum health. | [107,108] |
Folic Acid | Supports red blood cell production and prevents anemia. | Helps maintain oral tissue health and promotes wound healing by reducing oxidative stress. | [41] |
Lutein and Zeaxanthin | Protects against age-related macular degeneration | Contributes to oral health by improving skin tone | [109,110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdan-Andreescu, C.F.; Bănățeanu, A.-M.; Botoacă, O.; Defta, C.L.; Poalelungi, C.-V.; Brăila, A.D.; Damian, C.M.; Brăila, M.G.; Dȋră, L.M. Oral Wound Healing in Aging Population. Surgeries 2024, 5, 956-969. https://doi.org/10.3390/surgeries5040077
Bogdan-Andreescu CF, Bănățeanu A-M, Botoacă O, Defta CL, Poalelungi C-V, Brăila AD, Damian CM, Brăila MG, Dȋră LM. Oral Wound Healing in Aging Population. Surgeries. 2024; 5(4):956-969. https://doi.org/10.3390/surgeries5040077
Chicago/Turabian StyleBogdan-Andreescu, Claudia Florina, Andreea-Mariana Bănățeanu, Oana Botoacă, Carmen Liliana Defta, Cristian-Viorel Poalelungi, Anca Daniela Brăila, Constantin Marian Damian, Matei Georgian Brăila, and Laurențiu Mihai Dȋră. 2024. "Oral Wound Healing in Aging Population" Surgeries 5, no. 4: 956-969. https://doi.org/10.3390/surgeries5040077
APA StyleBogdan-Andreescu, C. F., Bănățeanu, A. -M., Botoacă, O., Defta, C. L., Poalelungi, C. -V., Brăila, A. D., Damian, C. M., Brăila, M. G., & Dȋră, L. M. (2024). Oral Wound Healing in Aging Population. Surgeries, 5(4), 956-969. https://doi.org/10.3390/surgeries5040077