Optimizing the Location of Supports under a Monolithic Floor Slab
Abstract
:1. Introduction
2. Materials and Methods
- Interior point method;
- Genetic algorithm;
- Pattern search method;
- Surrogate optimization method;
- Particle swarm method;
- Simulated annealing method.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadkhanlou, F.; Adeli, H. Optimum cost design of reinforced concrete slabs using neural dynamics model. Eng. Appl. Artif. Intell. 2005, 18, 65–72. [Google Scholar] [CrossRef]
- Alcalá, J.; González-Vidosa, F.; Yepes, V.; Martí, J.V. Embodied energy optimization of prestressed concrete slab bridge decks. Technologies 2018, 6, 43. [Google Scholar] [CrossRef]
- Aldwaik, M.; Adeli, H. Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular highrise building structures. Struct. Multidiscip. Optim. 2016, 54, 151–164. [Google Scholar] [CrossRef]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Eng. Struct. 2016, 109, 126–138. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Tayşi, N.; Nassani, D.E.; Hussein, A.K. Finite element analysis and optimization of bonded post-tensioned concrete slabs. Cogent Eng. 2017, 4, 1341288. [Google Scholar] [CrossRef]
- Vatin, N.I.; Ivanov, A.Y.; Rutman, Y.L.; Chernogorskiy, S.A. Earthquake engineering optimization of structures by economic criterion. Mag. Civ. Eng. 2017, 8, 67–83. [Google Scholar] [CrossRef]
- Yepes, V.; Martí Albiñana, J.V.; García-Segura, T. Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm. Int. J. Comput. Methods Exp. Meas. 2017, 5, 179–189. [Google Scholar] [CrossRef]
- Zelickman, Y.; Amir, O. Optimization of post-tensioned concrete slabs for minimum cost. Eng. Struct. 2022, 259, 114132. [Google Scholar] [CrossRef]
- Huber, T.; Burger, J.; Mata-Falcón, J.; Kaufmann, W. Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork. Struct. Concr. 2023, 24, 1932–1955. [Google Scholar] [CrossRef]
- Moita, J.S.; Araújo, A.L.; Correia, V.F.; Soares, C.M.M.; Herskovits, J. Material distribution and sizing optimization of functionally graded plate-shell structures. Compos. Part B Eng. 2018, 142, 263–272. [Google Scholar] [CrossRef]
- Andreev, V.I.; Barmenkova, E.V.; Potekhin, I.A. Way of optimization of stress state of elements of concrete structures. Procedia Eng. 2016, 153, 37–44. [Google Scholar] [CrossRef]
- Andreev, V.I. About one way of optimization of the thick-walled shells. Appl. Mech. Mater. 2012, 166, 354–358. [Google Scholar] [CrossRef]
- Andreev, V.I. Optimization of thick-walled shells based on solutions of inverse problems of the elastic theory for inhomogeneous bodies. In Computer Aided Optimum Design in Engineering; WIT Press: Billerica MA, USA, 2012; pp. 189–202. [Google Scholar]
- Andreev, V.I.; Chepurnenko, A.S.; Jazyev, B.M. Model of equal-stressed cylinder based on the Mohr failure criterion. Adv. Mater. Res. 2014, 887, 869–872. [Google Scholar] [CrossRef]
- Yazyev, S.; Bekkiev, M.; Peresypkin, E.; Turko, M. Task for a Prestressed Reinforced Concrete Cylinder with External Reinforcement and Cylinder Optimization by Varying the Modulus of Elasticity. In Proceedings of the Energy Management of Municipal Transportation Facilities and Transport, Khabarovsk, Russia, 10–13 April 2017; pp. 869–876. [Google Scholar] [CrossRef]
- Beskopylny, A.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B. Nano modifying additive micro silica influence on integral and differential characteristics of vibrocentrifuged concrete. J. Build. Eng. 2022, 51, 104235. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D. Influence of the Chemical Activation of Aggregates on the Properties of Lightweight Vibro-Centrifuged Fiber-Reinforced Concrete. J. Compos. Sci. 2022, 6, 273. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; Beskopylny, N. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials 2022, 15, 4254. [Google Scholar] [CrossRef] [PubMed]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Influence of Mechanochemical Activation of Concrete Components on the Properties of Vibro-Centrifugated Heavy Concrete. Appl. Sci. 2021, 11, 10647. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Butko, D.; Smolyanichenko, A.S. Influence of Composition and Technological Factors on Variatropic Efficiency and Constructive Quality Coefficients of Lightweight Vibro-Centrifuged Concrete with Alkalized Mixing Water. Appl. Sci. 2021, 11, 9293. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Efimenko, E.; Mailyan, D.; Yazyev, B. The location of supports under the monolithic reinforced concrete slabs optimization. Mag. Civ. Eng. 2021, 4, 10404. [Google Scholar] [CrossRef]
- Lai, M.; Zucca, M.; Meloni, D.; Reccia, E.; Cazzani, A. Thin corrugated-edge shells inspired by Nervi’s dome: Numerical insight about their mechanical behaviour. Thin-Walled Struct. 2023, 191, 111076. [Google Scholar] [CrossRef]
- Aydin, E.; Dutkiewicz, M.; Öztürk, B.; Sonmez, M. Optimization of elastic spring supports for cantilever beams. Struct. Multidiscip. Optim. 2020, 62, 55–81. [Google Scholar] [CrossRef]
- Hauser, B.R.; Wang, B.P. Optimal design of a parallel beam system with elastic supports to minimize flexural response to harmonic loading using a combined optimization algorithm. Struct. Multidiscip. Optim. 2018, 58, 1453–1465. [Google Scholar] [CrossRef]
- Kozikowska, A. Multi-objective topology and geometry optimization of statically determinate beams. Struct. Eng. Mech. Int’l J. 2019, 70, 367–380. [Google Scholar]
- Wang, B.P.; Chen, J.L. Application of genetic algorithm for the support location optimization of beams. Comput. Struct. 1996, 58, 797–800. [Google Scholar] [CrossRef]
- Xie, C.N.; Li, X.F. Optimal location of ring support for heavy Mindlin plates under axisymmetric loading. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 1270–1279. [Google Scholar] [CrossRef]
- Won, K.M.; Park, Y.S. Optimal support positions for a structure to maximize its fundamental natural frequency. J. Sound Vib. 1998, 213, 801–812. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, J.S.; Zhang, W.H. Optimization of support positions to maximize the fundamental frequency of structures. Int. J. Numer. Methods Eng. 2004, 61, 1584–1602. [Google Scholar] [CrossRef]
- Wang, D. Optimization of support positions to minimize the maximal deflection of structures. Int. J. Solids Struct. 2004, 41, 7445–7458. [Google Scholar] [CrossRef]
- Wang, D. Optimal design of structural support positions for minimizing maximal bending moment. Finite Elem. Anal. Des. 2006, 43, 95–102. [Google Scholar] [CrossRef]
- Wang, C.M.; Wang, L.; Ang, K.K.; Liew, K.M. Optimization of internal line support positions for plates against vibration. J. Struct. Mech. 1993, 21, 429–454. [Google Scholar] [CrossRef]
- Wang, D.; Friswell, M.I. Support position optimization with minimum stiffness for plate structures including support mass. J. Sound Vib. 2021, 499, 116003. [Google Scholar] [CrossRef]
- Jihong, Z.; Weihong, Z. Maximization of structural natural frequency with optimal support layout. Struct. Multidiscip. Optim. 2006, 31, 462–469. [Google Scholar] [CrossRef]
- Aydın, E.; Öztürk, B.A.K.İ.; Dutkiewicz, M. Determination of optimal elastic springs for cantilever beams supported by elastic foundation. In Proceedings of the Engineering Mechanics 2018, Svratka, Czech Republic, 14–17 May 2018; pp. 33–36. [Google Scholar] [CrossRef]
- Wang, D.; Wen, M. Vibration attenuation of beam structure with intermediate support under harmonic excitation. J. Sound Vib. 2022, 532, 117008. [Google Scholar] [CrossRef]
- Kitov, Y.; Verevicheva, M.; Vatulia, G.; Orel, Y.; Deryzemlia, S. Design solutions for structures with optimal internal stress distribution. MATEC Web Conf. 2017, 133, 03001. [Google Scholar] [CrossRef]
- Loureiro, D.; Loja, M.A.; Silva, T.A. Optimal location of supports in beam structures using genetic algorithms. In Proceedings of the 2014 Sixth World Congress on Nature and Biologically Inspired Computing, Porto, Portugal, 30 July–1 August 2014; pp. 293–298. [Google Scholar] [CrossRef]
- Jang, G.W.; Shim, H.S.; Kim, Y.Y. Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model. J. Mech. Des. 2009, 131, 021005. [Google Scholar] [CrossRef]
- Akhtyamova, L. Optimization of a truncated conical shell wind turbine tower. Constr. Archit. 2021, 9, 51–55. [Google Scholar] [CrossRef]
- Efimenko, E.A.; Chepurnenko, A.S.; Mailyan, D.R.; Saibel, A.V. The industrial buildings reinforced concrete floor slabs with rational choice of the column pitch. IOP Conf. Ser. Mater. Sci. Eng. 2020, 896, 012004. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method for Solid and Structural Mechanics; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Bathe, K.J. Finite Element Method; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Belhocine, A.; Shinde, D.; Patil, R. Thermo-mechanical coupled analysis based design of ventilated brake disc using genetic algorithm and particle swarm optimization. JMST Adv. 2021, 3, 41–54. [Google Scholar] [CrossRef]
- Murlidhar, B.R.; Sinha, R.K.; Mohamad, E.T.; Sonkar, R.; Khorami, M. The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. Int. J. Hydromechatron. 2020, 3, 69–87. [Google Scholar] [CrossRef]
- Novoselov, O.G.; Sabitov, L.S.; Sibgatullin, K.E.; Sibgatullin, E.S.; Klyuev, A.S.; Klyuev, S.V.; Shorstova, E.S. Method for calculating the strength of massive structural elements in the general case of their stress-strain state (kinematic method). Constr. Mater. Prod. 2023, 6, 5–17. [Google Scholar] [CrossRef]
- Novoselov, O.G.; Sabitov, L.S.; Sibgatullin, K.E.; Sibgatullin, E.S.; Klyuev, A.V.; Klyuev, S.V.; Shorstova, E.S. Method for calculating the strength of massive structural elements in the general case of their stress-strain state (parametric equations of the strength surface). Constr. Mater. Prod. 2023, 6, 104–120. [Google Scholar] [CrossRef]
- Jiao, J.; Ghoreishi, S.M.; Moradi, Z.; Oslub, K. Coupled particle swarm optimization method with genetic algorithm for the static–dynamic performance of the magneto-electro-elastic nanosystem. Eng. Comput. 2021, 38, 1–15. [Google Scholar] [CrossRef]
- Dziwiński, P.; Bartczuk, Ł. A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. IEEE Trans. Fuzzy Syst. 2019, 28, 1140–1154. [Google Scholar] [CrossRef]
- Moslehi, F.; Haeri, A. A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection. J. Ambient Intell. Humaniz. Comput. 2020, 11, 1105–1127. [Google Scholar] [CrossRef]
- Memon, M.A.; Siddique, M.D.; Mekhilef, S.; Mubin, M. Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-bridge multilevel inverter. IEEE Trans. Ind. Electron. 2021, 69, 1477–1487. [Google Scholar] [CrossRef]
- Omidinasab, F.; Goodarzimehr, V. A hybrid particle swarm optimization and genetic algorithm for truss structures with discrete variables. J. Appl. Comput. Mech. 2020, 6, 593–604. [Google Scholar] [CrossRef]
- Son, J.H.; Kwak, B.M. Optimization of boundary conditions for maximum fundamental frequency of vibrating structures. AIAA J. 1993, 31, 2351–2357. [Google Scholar] [CrossRef]
Number of Columns n | Algorithm | Optimization Criterion | wmax, mm | W, kJ |
---|---|---|---|---|
3 | Surrogate optimization | Minimum deflection | 31.9 | 13.8464 |
3 | Surrogate optimization | Minimum PSE | 45.5 | 9.14 |
3 | Pattern search | Minimum deflection | 49.1 | 18.3690 |
3 | Pattern search | Minimum PSE | 43.6 | 8.9258 |
3 | Interior point | Minimum deflection | 36.1 | 10.6883 |
3 | Interior point | Minimum PSE | 43.6 | 8.9258 |
3 | Simulated annealing | Minimum deflection | 44.4 | 9.9807 |
3 | Simulated annealing | Minimum PSE | 45.3 | 8.9176 |
3 | Genetic | Minimum deflection | 31.8 | 13.1231 |
3 | Genetic | Minimum PSE | 47.4 | 8.9093 |
3 | Particle swarm | Minimum deflection | 30.1 | 11.8760 |
3 | Particle swarm | Minimum PSE | 47.4 | 8.9093 |
4 | Genetic | Minimum deflection | 5.12 | 2.7803 |
4 | Genetic | Minimum PSE | 5.25 | 2.6488 |
4 | Particle swarm | Minimum deflection | 5.64 | 3.0189 |
4 | Particle swarm | Minimum PSE | 5.25 | 2.6488 |
5 | Genetic | Minimum deflection | 4.5 | 2.1360 |
5 | Genetic | Minimum PSE | 5.15 | 2.0399 |
5 | Particle swarm | Minimum deflection | 4.44 | 2.3249 |
5 | Particle swarm | Minimum PSE | 5.36 | 2.0366 |
6 | Genetic | Minimum deflection | 3.89 | 1.9124 |
6 | Genetic | Minimum PSE | 5.8578 | 1.4440 |
6 | Particle swarm | Minimum deflection | 3.35 | 1.6955 |
6 | Particle swarm | Minimum PSE | 4.6 | 1.4344 |
7 | Genetic | Minimum deflection | 5.15 | 2.3305 |
7 | Genetic | Minimum PSE | 4.23 | 1.0243 |
7 | Particle swarm | Minimum deflection | 2.95 | 1.3748 |
7 | Particle swarm | Minimum PSE | 4.19 | 1.0227 |
8 | Genetic | Minimum deflection | 2.47 | 1.1119 |
8 | Genetic | Minimum PSE | 4.35 | 0.7327 |
8 | Particle swarm | Minimum deflection | 2.17 | 1.1563 |
8 | Particle swarm | Minimum PSE | 2.58 | 0.7115 |
9 | Genetic | Minimum deflection | 1.71 | 0.7663 |
9 | Genetic | Minimum PSE | 1.0621 | 0.4888 |
9 | Particle swarm | Minimum deflection | 1.71 | 0.9135 |
9 | Particle swarm | Minimum PSE | 2.39 | 0.6316 |
10 | Genetic | Minimum deflection | 1.78 | 0.8878 |
10 | Genetic | Minimum PSE | 1.56 | 0.4288 |
10 | Particle swarm | Minimum deflection | 1.25 | 0.6776 |
10 | Particle swarm | Minimum PSE | 1.04 | 0.4137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepurnenko, A.; Turina, V.; Akopyan, V. Optimizing the Location of Supports under a Monolithic Floor Slab. CivilEng 2024, 5, 502-520. https://doi.org/10.3390/civileng5020026
Chepurnenko A, Turina V, Akopyan V. Optimizing the Location of Supports under a Monolithic Floor Slab. CivilEng. 2024; 5(2):502-520. https://doi.org/10.3390/civileng5020026
Chicago/Turabian StyleChepurnenko, Anton, Vasilina Turina, and Vladimir Akopyan. 2024. "Optimizing the Location of Supports under a Monolithic Floor Slab" CivilEng 5, no. 2: 502-520. https://doi.org/10.3390/civileng5020026
APA StyleChepurnenko, A., Turina, V., & Akopyan, V. (2024). Optimizing the Location of Supports under a Monolithic Floor Slab. CivilEng, 5(2), 502-520. https://doi.org/10.3390/civileng5020026