A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
3.1. Publication Trends
3.2. Sources of Publications and Subject Categories
3.3. Country and Institution of Publications
3.4. Productivity of Authors
3.5. Citations of Publications
3.6. Cited References
3.7. Author Keywords in Publications
4. Qualitative Analysis
4.1. Civil Engineering
4.1.1. Buildings
4.1.2. Foundations
4.1.3. Road Pavements and Bridges
4.1.4. Underground Utilities
4.2. Geological Studies
4.3. Archeological Applications
4.4. Hydrological Research
5. New Avenues of GPR Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhee, J.Y.; Park, K.T.; Cho, J.W.; Lee, S.Y. A study of the application and the limitations of GPR investigation on underground survey of the Korean expressways. Remote Sens. 2021, 13, 1805. [Google Scholar] [CrossRef]
- Zhou, D.; Zhu, H. Application of ground penetrating radar in detecting deeply embedded reinforcing bars in pile foundation. Adv. Civ. Eng. 2021, 2021, 4813415. [Google Scholar] [CrossRef]
- Xiang, Z.; Rashidi, A.; Ou, G.G. States of practice and research on applying GPR technology for labeling and scanning constructed facilities. J. Perform. Constr. Facil. 2019, 33, 03119001. [Google Scholar] [CrossRef]
- Dabous, S.A.; Yaghi, S.; Alkass, S.; Moselhi, O. Concrete bridge deck condition assessment using IR thermography and ground penetrating radar technologies. Autom. Constr. 2017, 81, 340–354. [Google Scholar] [CrossRef]
- Teoh, Y.J.; Bruka, M.A.; Idris, N.M.; Ismail, N.A.; Muztaza, N.M. Introduction of a ground penetrating radar system for subsurface investigation in Balik Pulau, Penang Island. J. Phys. Conf. Ser. 2018, 995, 012098. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.W.L.; Derobert, X.; Annan, P. A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar]
- Rathod, H.; Debeck, S.; Gupta, R.; Chow, B. Applicability of GPR and a rebar detector to obtain rebar information of existing concrete structures. Case Stud. Constr. Mater. 2019, 11, e00240. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Al-Qadi, I.L. Real-time monitoring of asphalt concrete pavement density during construction using ground penetrating radar: Theory to practice. Transp. Res. Rec. 2019, 2673, 329–338. [Google Scholar] [CrossRef]
- Joshaghani, A.; Shokrabadi, M. Ground penetrating radar (GPR) applications in concrete pavements. Int. J. Pavement Eng. 2022, 23, 4504–4531. [Google Scholar] [CrossRef]
- Tabarro, P.G.; Pouliot, J.; Losier, L.M.; Fortier, R. Detection and location of buried infrastructures using ground penetrating radar: A new approach based on GIS and data integration. Int. J. 3D Inf. Model. IJ3DIM 2018, 7, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Han, S. Safety inspection system and comprehensive evaluation method for concrete structure of gas pipeline tunnel based on fuzzy mathematics. Adv. Mech. Eng. 2021, 13, 16878140211046098. [Google Scholar] [CrossRef]
- Kgarume, T.; Van Schoor, M.; Nontso, Z. The use of 3D ground penetrating radar to mitigate the risk associated with falls of ground in Bushveld Complex platinum mines. J. S. Afr. Inst. Min. Metall. 2019, 119, 973–982. [Google Scholar] [CrossRef]
- Fedorova, L.; Lejzerowicz, A.; Kulyandin, G.; Savvin, D.; Fedorov, M. Ground penetrating radar investigations of the geological structure of loose sediments at solid mineral deposits. E3S Web Conf. 2020, 192, 04005. [Google Scholar] [CrossRef]
- Zheng, L.; Li, X.; Liu, Z.; Huang, D.; Tang, Z. Accuracy evaluation of advanced geological prediction based on improved AHP and GPR. Math. Probl. Eng. 2020, 2020, 8617165. [Google Scholar] [CrossRef]
- Ebraheem, M.O.; Ibrahim, H.A. Contributions of ground-penetrating radar in research of some predynastic and dynastic archaeological sites at the eastern and western banks of the River Nile, Assiut, Egypt. Archaeol. Prospect. 2022, 29, 177–189. [Google Scholar]
- El Emam, A.E.; Lethy, A.; Radwan, A.M.; Awad, A. Archaeological investigation and hazard assessment using magnetic, ground-penetrating radar, and GPS tools at Dahshour area, Giza, Egypt. Front. Earth Sci. 2021, 9, 437. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, X.H.; Liu, R.; He, Y.; Wu, S. Reviewing the domain of technology and innovation management: A visualizing bibliometric analysis. SAGE Open 2019, 9, 2158244019854644. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, O.J.; da Silva, F.F.; Juliani, F.; Barbosa, L.C.F.M.; Nunhes, T.V. Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects. In Scientometrics Recent Advances; IntechOpen: London, UK, 2019. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring topics in bibliometric research through citation networks and semantic analysis. Front. Res. Metr. 2021, 6, 742311. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, F.T.; Leucci, G. Global research patterns on ground penetrating radar (GPR). Surv. Geophys. 2018, 39, 1039–1068. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Moral Muñoz, J.A.; Herrera Viedma, E.; Santisteban Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, e290103. [Google Scholar] [CrossRef] [Green Version]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Butt, N.S.; Malik, A.A.; Shahbaz, M.Q. Bibliometric analysis of statistics journals indexed in web of science under emerging source citation index. SAGE Open 2021, 11, 2158244020988870. [Google Scholar] [CrossRef]
- Butler, L.; Visser, M.S. Extending citation analysis to non-source items. Scientometrics 2006, 66, 327–343. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J.; Noyons, E.C. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Rehman, S.U.; Al-Almaie, S.M.; Haq, I.U.; Ahmad, S.; Ahmad, S.; Al-Shammari, M.A.; Darwish, M.; Mustafa, T. Journal of family and community medicine: A scientometric analysis 1994–2020. J. Fam. Community Med. 2021, 28, 164. [Google Scholar]
- Yanhui, S.; Lijuan, W.; Shiji, C. An exploratory study of the all-author bibliographic coupling analysis: Taking scientometrics for example. J. Inf. Sci. 2022, 48, 767–782. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demir, M.H.; Solak, B.; Kayacan, A.; Altinci, S. Investigating the trends in arctic research: The increasing role of social sciences and humanities. Sci. Total Environ. 2020, 729, 139027. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Giannopoulos, A. Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 2005, 19, 755–762. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Lambot, S.; Slob, E.C.; van den Bosch, I.; Stockbroeckx, B.; Vanclooster, M. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2555–2568. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Gurbuz, A.C.; McClellan, J.H.; Scott, W.R., Jr. Compressive sensing for subsurface imaging using ground penetrating radar. Signal Process. 2009, 89, 1959–1972. [Google Scholar] [CrossRef]
- Mas-Tur, A.; Roig-Tierno, N.; Sarin, S.; Haon, C.; Sego, T.; Belkhouja, M.; Porter, A.; Merigó, J.M. Co-citation, bibliographic coupling and leading authors, institutions and countries in the 50 years of technological forecasting and social change. Technol. Forecast Soc. Chang. 2021, 165, 120487. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; IEE Radar, Sonar and Navigation Series; The Institution of Electrical Engineers: London, UK, 2004. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; Volume 509. [Google Scholar]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Tripathi, M.; Kumar, S.; Sonker, S.K.; Babbar, P. Occurrence of author keywords and keywords plus in social sciences and humanities research: A preliminary study. CJSIM 2018, 12, 215–232. [Google Scholar] [CrossRef]
- Bordag, S. A comparison of co-occurrence and similarity measures as simulations of context. In International Conference on Intelligent Text Processing and Computational Linguistics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 52–63. [Google Scholar]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PLoS ONE 2017, 12, e0172778. [Google Scholar]
- Hussein, M.; Zayed, T. Crane operations and planning in modular integrated construction: Mixed review of literature. Autom. Constr. 2021, 122, 103466. [Google Scholar] [CrossRef]
- Benedetto, A.; Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar; Springer: Cham, Switzerland, 2015; p. 371. [Google Scholar]
- Pérez-Gracia, V.; Caselles, O.; Clapés, J.; Santos-Assunçao, S. GPR building inspection: Examples of building structures assessed with ground penetrating radar. In Proceedings of the 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Edinburgh, UK, 28–30 June 2017. [Google Scholar]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; D’amico, F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [Google Scholar] [CrossRef]
- Alani, A.M.; Aboutalebi, M.; Kilic, G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. J. Appl. Geophy. 2013, 97, 45–54. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; Calvi, A.; Brancadoro, M.G.; Alani, A.M. Railway ballast condition assessment using ground-penetrating radar–An experimental, numerical simulation and modelling development. Constr. Build. Mater. 2017, 140, 508–520. [Google Scholar] [CrossRef]
- Alani, A.M.; Tosti, F. GPR applications in structural detailing of a major tunnel using different frequency antenna systems. Constr. Build. Mater. 2018, 158, 1111–1122. [Google Scholar] [CrossRef]
- Lopera, O.; Slob, E.C.; Milisavljevic, N.; Lambot, S. Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Trans. Geosci. Remote Sens. 2007, 45, 707–717. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Lahouar, S. Measuring layer thicknesses with GPR–Theory to practice. Constr. Build. Mater. 2005, 19, 763–772. [Google Scholar] [CrossRef]
- Benedetto, A.; Pensa, S. Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. J. Appl. Geophy. 2007, 62, 107–123. [Google Scholar] [CrossRef]
- Loizos, A.; Plati, C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT E Int. 2007, 40, 147–157. [Google Scholar] [CrossRef]
- Loizos, A.; Plati, C. Accuracy of ground penetrating radar horn-antenna technique for sensing pavement subsurface. IEEE Sens. J. 2007, 7, 842–850. [Google Scholar] [CrossRef]
- Lahouar, S.; Al-Qadi, I.L. Automatic detection of multiple pavement layers from GPR data. NDT E Int. 2008, 41, 69–81. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Leng, Z.; Lahouar, S.; Baek, J. In-place hot-mix asphalt density estimation using ground-penetrating radar. Transp. Res. Rec. 2010, 2152, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Plati, C.; Loizos, A. Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies. J. Appl. Geophy. 2013, 97, 3–10. [Google Scholar] [CrossRef]
- Yan, J.; Jaw, S.W.; Soon, K.H.; Wieser, A.; Schrotter, G. Towards an underground utilities 3D data model for land administration. Remote Sens. 2019, 11, 1957. [Google Scholar] [CrossRef] [Green Version]
- Iftimie, N.; Savin, A.; Steigmann, R.; Dobrescu, G.S. Underground pipeline identification into a non-destructive case study based on ground-penetrating radar imaging. Remote Sens. 2021, 13, 3494. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Kondracka, M. Detection of soil pipes using ground penetrating radar. Remote Sens. 2019, 11, 1864. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gracia, V.; García García, F.; Rodriguez Abad, I. GPR evaluation of the damage found in the reinforced concrete base of a block of flats: A case study. NDT E Int. 2008, 41, 341–353. [Google Scholar] [CrossRef]
- Ortega-Ramírez, J.; Bano, M.; Cordero-Arce, M.T.; Villa-Alvarado, L.A.; Fraga, C.C. Application of non-invasive geophysical methods (GPR and ERT) to locate the ancient foundations of the first cathedral of Puebla, Mexico. A case study. J. Appl. Geophys. 2020, 174, 103958. [Google Scholar] [CrossRef]
- Salako, A.O.; Osotuyi, A.G.; Adepelumi, A.A. Seepage investigations of heterogeneous soils beneath some buildings using geophysical approaches: Example from southwestern Nigeria. Int. J. Geo-Eng. 2019, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gracia, V.; Solla, M. Inspection procedures for effective GPR surveying of buildings. In Civil Engineering Applications of Ground Penetrating Radar; Benedetto, A., Pajewski, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 97–123. [Google Scholar]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A review of GPR application on transport infrastructures: Troubleshooting and best practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Pedret Rodés, J.; Martínez Reguero, A.; Pérez-Gracia, V. GPR spectra for monitoring asphalt pavements. Remote Sens. 2020, 12, 1749. [Google Scholar] [CrossRef]
- Liu, X.; Hao, P.; Wang, A.; Zhang, L.; Gu, B.; Lu, X. Non-destructive detection of highway hidden layer defects using a ground-penetrating radar and adaptive particle swarm support vector machine. PeerJ Comput. Sci. 2021, 7, e417. [Google Scholar] [CrossRef] [PubMed]
- Alsharqawi, M.; Zayed, T.; Dabous, S.A. Integrated condition rating and forecasting method for bridge decks using visual inspection and ground penetrating radar. Autom. Constr. 2018, 89, 135–145. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Duong, T.H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Autom. Constr. 2018, 89, 292–298. [Google Scholar] [CrossRef]
- Abdelkader, E.M.; Marzouk, M.; Zayed, T. An optimization-based methodology for the definition of amplitude thresholds of the ground penetrating radar. Soft Comput. 2019, 23, 12063–12086. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Zayed, T. Automated visualization of concrete bridge deck condition from GPR data. NDT E Int. 2019, 102, 120–128. [Google Scholar] [CrossRef]
- Bachiri, T.; Khamlichi, A.; Bezzazi, M. Bridge deck condition assessment by using GPR: A review. MATEC Web Conf. 2018, 191, 00004. [Google Scholar] [CrossRef]
- Zaki, A.; Megat Johari, M.A.; Wan Hussin, W.M.A.; Jusman, Y. Experimental assessment of rebar corrosion in concrete slab using ground penetrating radar (GPR). Int. J. Corros. 2018, 2018, 5389829. [Google Scholar] [CrossRef]
- Plati, C.; Loizos, A.; Gkyrtis, K. Integration of non-destructive testing methods to assess asphalt pavement thickness. NDT E Int. 2020, 115, 102292. [Google Scholar] [CrossRef]
- Oreto, C.; Massotti, L.; Biancardo, S.A.; Veropalumbo, R.; Viscione, N.; Russo, F. BIM-based pavement management tool for scheduling urban road maintenance. Infrastructures 2021, 6, 148. [Google Scholar] [CrossRef]
- Oreto, C.; Biancardo, S.A.; Viscione, N.; Veropalumbo, R.; Russo, F. Road pavement information modeling through maintenance scenario evaluation. J. Adv. Transp. 2021, 2021, 8823117. [Google Scholar] [CrossRef]
- Gabryś, M.; Ortyl, Ł. Georeferencing of multi-channel GPR—Accuracy and efficiency of mapping of underground utility networks. Remote Sens. 2020, 12, 2945. [Google Scholar] [CrossRef]
- Ali, H.; Ideris, N.S.M.; Zaidi, A.A.; Azalan, M.Z.; Amran, T.T.; Ahmad, M.R.; Rahim, N.A.; Shukor, S.A. Ground penetrating radar for buried utilities detection and mapping: A review. J. Phys. Conf. Ser. 2021, 2107, 012056. [Google Scholar] [CrossRef]
- Kuliczkowska, E. An analysis of road pavement collapses and traffic safety hazards resulting from leaky sewers. Balt. J. Road Bridge Eng. 2016, 11, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Lin, M.S.; Hsiao, G.L.K.; Wang, T.C.; Kao, C.S. Underground pipeline leakage risk assessment in an urban city. Int. J. Environ. Res. Public Health 2020, 17, 3929. [Google Scholar] [CrossRef]
- Slob, E.; Sato, M.; Olhoeft, G. Surface and borehole ground-penetrating-radar developments. Geophysics 2010, 75, A103–A175. [Google Scholar] [CrossRef] [Green Version]
- Proulx-McInnis, S.; St-Hilaire, A.; Rousseau, A.N.; Jutras, S. A review of ground-penetrating radar studies related to peatland stratigraphy with a case study on the determination of peat thickness in a northern boreal fen in Quebec, Canada. Prog. Phys. Geogr. 2013, 37, 767–786. [Google Scholar] [CrossRef]
- Corradini, E.; Wilken, D.; Zanon, M.; Groß, D.; Lübke, H.; Panning, D.; Dörfler, W.; Rusch, K.; Mecking, R.; Erkul, E.; et al. Reconstructing the palaeoenvironment at the early Mesolithic site of Lake Duvensee: Ground-penetrating radar and geoarchaeology for 3D facies mapping. Holocene 2020, 30, 820–833. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-Penetrating Radar for Geoarchaeology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Conyers, L.B.; Cameron, C.M. Ground-penetrating radar techniques and three-dimensional computer mapping in the American Southwest. J. Field Archaeol. 1998, 25, 417–430. [Google Scholar]
- Annan, A.P.; Cosway, S.W.; Redman, J.D. Water table detection with ground-penetrating radar. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 1991; pp. 494–496. [Google Scholar]
- Mahmoudzadeh, M.R.; Francés, A.P.; Lubczynski, M.; Lambot, S. Using ground penetrating radar to investigate the water table depth in weathered granites—Sardon case study, Spain. J. Appl. Geophys. 2012, 79, 17–26. [Google Scholar] [CrossRef]
- Lambot, S.; Weihermüller, L.; Huisman, J.A.; Vereecken, H.; Vanclooster, M.; Slob, E.C. Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resour. Res. 2006, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Maryanto, S.; Suciningtyas, I.K.L.N.; Dewi, C.N.; Rachmansyah, A. Integrated resistivity and ground penetrating radar observations of underground seepage of hot water at Blawan-Ijen geothermal field. Int. J. Geophys. 2016, 2016, 6034740. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, J.; Cui, X.; Liu, Q.; Cao, X.; Chen, X. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 2019, 12, 95–118. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Ling, T.; Fu, G.; Guo, Y. Experimental research on evaluation of soil water content using ground penetrating radar and wavelet packet-based energy analysis. Remote Sens. 2021, 13, 5047. [Google Scholar] [CrossRef]
- Knight, R. Ground penetrating radar for environmental applications. Annu. Rev. Earth Planet Sci. 2001, 29, 229–255. [Google Scholar] [CrossRef] [Green Version]
- Mesbah, H.; Shokry, M.; Soliman, M.; Atya, M. Integrated geophysical investigations to detect the shallow subsurface settings at new Sohag city, Egypt. Int. J. Geosci. 2017, 8, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Nordiana, M.M.; Azwin, I.N.; Taqiuddin, Z.M.; Maslinda, U.; Hisham, H.; Amalina, M.N.; Saharudin, M.A.; Nordiana, A.N. Integration of ground penetrating radar (GPR) and 2-D resistivity imaging methods for soil investigation. IOP Conf. Ser. Earth Environ. Sci. 2017, 62, 012007. [Google Scholar] [CrossRef] [Green Version]
- Araffa, S.A.S.; Gobashy, M.M.; Khalil, M.H.; Abdelaal, A. Integration of geophysical techniques to detect geotechnical hazards: A case study in Mokattam, Cairo, Egypt. Bull. Eng. Geol. Environ. 2021, 80, 8021–8041. [Google Scholar] [CrossRef]
- Capozzoli, L.; Giampaolo, V.; De Martino, G.; Perciante, F.; Lapenna, V.; Rizzo, E. ERT and GPR prospecting applied to unsaturated and subwater analogue archaeological site in a full scale laboratory. Appl. Sci. 2022, 12, 1126. [Google Scholar] [CrossRef]
- Murín, I.; Neumann, M.; Brady, C.; Bátora, J.; Čapo, M.; Drozd, D. Application of magnetometry, georadar (GPR) and geoelectrical methods in archaeo-geophysical investigation of a Napoleonic battlefield with fortification at Pressburg (Bratislava, Slovakia). J. Appl. Geophys. 2022, 196, 104493. [Google Scholar] [CrossRef]
- Hussain, Y.; Uagoda, R.; Borges, W.; Nunes, J.; Hamza, O.; Condori, C.; Aslam, K.; Dou, J.; Cárdenas-Soto, M. The potential use of geophysical methods to identify cavities, sinkholes and pathways for water infiltration. Water 2020, 12, 2289. [Google Scholar] [CrossRef]
- Clementini, C.; Latini, D.; Gagliardi, V.; Ciampoli, L.B.; D’Amico, F.; Del Frate, F. Synergistic Monitoring of Transport Infrastructures by Multi-Temporal InSAR and GPR Technologies: A Case Study in Salerno, Italy. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XII, Online, 13–18 September 2021. [Google Scholar]
- D’Amico, F.; Gagliardi, V.; Clementini, C.; Latini, D.; Del Frate, F.; Bianchini Ciampoli, L.; Di Benedetto, A.; Fiani, M.; Benedetto, A. Integrated Health Monitoring of Transport Assets by Ground-Based Non-Destructive Technologies (NDTs) and Satellite Remote Sensing Analysis. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021. [Google Scholar]
- Tosti, F.; Gagliardi, V.; Ciampoli, L.B.; Benedetto, A.; Threader, S.; Alani, A.M. Integration of Remote Sensing and Ground-Based Non-Destructive Methods in Transport Infrastructure Monitoring: Advances, Challenges and Perspectives. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta Pusat, Indonesia, 29–30 September 2021. [Google Scholar]
- Maury, S.; Tiwari, R.K.; Balaji, S. Joint application of satellite remote sensing, ground penetrating radar (GPR) and resistivity techniques for targeting ground water in fractured Ophiolites of South Andaman Island, India. Environ. Earth Sci. 2016, 75, 237. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Kishore, N.; Sharma, M. Delineation and mapping of palaeochannels using remote sensing, geophysical, and sedimentological techniques: A comprehensive approach. Water Sci. 2021, 35, 100–108. [Google Scholar] [CrossRef]
- Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 2019, 97, 1191–1208. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Sarris, A.; Papadopoulos, N.; Hadjimitsis, D.G. Fusion of satellite multispectral images based on ground-penetrating radar (GPR) data for the investigation of buried concealed archaeological remains. Geosciences 2017, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.; Wang, X.Y.; Luo, L. The integration of VHR satellite imagery, GPR survey and boring for archaeological prospection at the Longcheng Site in Anhui Province, China. Archaeometry 2018, 60, 1088–1105. [Google Scholar] [CrossRef]
- Fernández, M.G.; López, Y.Á.; Arboleya, A.A.; Valdés, B.G.; Vaqueiro, Y.R.; Andrés, F.L.H.; García, A.P. Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle. IEEE Access 2018, 6, 45100–45112. [Google Scholar] [CrossRef]
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Las Heras, F.; Gonzalez-Valdes, B.; Rodriguez-Vaqueiro, Y.; Pino, A.; Arboleya-Arboleya, A. GPR system onboard a UAV for non-invasive detection of buried objects. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018. [Google Scholar]
- Šipoš, D.; Gleich, D. A lightweight and low-power UAV-borne ground penetrating radar design for landmine detection. Sensors 2020, 20, 2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Yan, Y.; Cong, P. Application of technology of UAV-mounted ground penetrating radar in the study of the thickness of soil plow layer. IOP Conf. Ser. Earth Environ. Sci. 2021, 719, 042074. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Yue, G.; Gao, Q.; Du, Y. Deep learning-based pavement subsurface distress detection via ground penetrating radar data. Autom. Constr. 2022, 142, 1–11. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Liu, X. A most-unfavorable-condition method for bridge-damage detection and analysis using PSP-inSAR. Remote Sens. 2022, 14, 137. [Google Scholar] [CrossRef]
- Schlögl, M.; Dorninger, P.; Kwapisz, M.; Ralbovsky, M.; Spielhofer, R. Remote sensing techniques for bridge deformation monitoring at millimetric scale: Investigating the potential of satellite radar interferometry, airborne laser scanning and ground-based mobile laser scanning. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 391–411. [Google Scholar] [CrossRef]
- Hu, M.; Xu, Y.; Li, S.; Lu, H. Detection of defect in ballastless track based on impact echo method combined with improved SAFT algorithm. Eng. Struct. 2022, 269, 114779. [Google Scholar] [CrossRef]
- Stüwe, I.; Zacherl, L.; Grosse, C.U. Ultrasonic and impact-echo testing for the detection of scaling in geothermal pipelines. J. Nondestruct. Eval. 2023, 42, 18. [Google Scholar] [CrossRef]
- Abudeif, A.M.; Abdel Aal, G.Z.; Masoud, A.M.; Mohammed, M.A. Detection of groundwater pathways to monitor their level rise in Osirion at Abydos archaeological site for reducing deterioration hazards, Sohag, Egypt using electrical resistivity tomography technique. Appl. Sci. 2022, 12, 10417. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, Y.; Xie, J.; Luo, Y.; Zhang, P.; Liu, H.; Liu, J. Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography. Eng. Geol. 2022, 306, 106750. [Google Scholar] [CrossRef]
- Zhou, R.; Wen, Z.; Su, H. Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning. ISPRS J. Photogramm. Remote Sens. 2022, 191, 85–104. [Google Scholar] [CrossRef]
- Loiotine, L.; Andriani, G.F.; Derron, M.H.; Parise, M.; Jaboyedoff, M. Evaluation of infraRed thermography supported by UAV and field surveys for rock mass characterization in complex settings. Geosciences 2022, 12, 116. [Google Scholar] [CrossRef]
Journal | Publisher | Impact Factor (2021) | Number of Publications | Average Publication Year | Total Citations | Average Citations | Average Normal Citations |
---|---|---|---|---|---|---|---|
Journal of Applied Geophysics | Elsevier | 2.121 | 401 | 2012.66 | 8052 | 20.08 | 1.04 |
IEEE Transactions on Geoscience and Remote Sensing | IEEE | 5.600 | 316 | 2011.79 | 9365 | 29.64 | 1.42 |
Near Surface Geophysics | Wiley | 2.033 | 231 | 2011.80 | 2525 | 10.93 | 0.54 |
Remote Sensing | MDPI | 4.848 | 199 | 2019.11 | 1276 | 6.41 | 0.98 |
Geophysics | SEG Library | 2.928 | 198 | 2011.19 | 4421 | 22.33 | 0.97 |
Country | Number of Publications | Average Publication Year | Total Citations | Average Citations | Average Normal Citations |
---|---|---|---|---|---|
United States | 2002 | 2012.58 | 41,744 | 20.85 | 1.11 |
People’s Republic of China | 959 | 2016.75 | 9372 | 9.77 | 1.08 |
Italy | 732 | 2013.69 | 12,193 | 16.66 | 1.02 |
Germany | 583 | 2013.47 | 12,825 | 22.00 | 1.24 |
England | 540 | 2013.49 | 12,054 | 22.32 | 1.50 |
Institution | Country | Number of Publications | Average Publication Year | Total Citations | Average Citations | Average Normal Citations |
---|---|---|---|---|---|---|
Chinese Academy of Sciences | China | 169 | 2016.35 | 2357 | 13.95 | 1.26 |
National Research Council | Italy | 116 | 2012.61 | 2339 | 20.16 | 1.05 |
Delft University of Technology | Holland | 91 | 2010.84 | 2784 | 30.59 | 1.29 |
University of Illinois Urbana-Champaign | United States | 88 | 2012.77 | 2207 | 25.08 | 1.43 |
Forschungszentrum Jülich | Germany | 85 | 2013.94 | 2427 | 28.55 | 1.57 |
Scholar | Affiliation | Number of Publications | Average Publication Year | Total Citations | Average Citations | Average Normal Citations |
---|---|---|---|---|---|---|
S. Lambot | Université catholique de Louvain | 63 | 2013.97 | 1547 | 24.56 | 1.37 |
F. Soldovieri | Italian National Research Council | 63 | 2013.06 | 1271 | 20.17 | 1.18 |
H. Vereecken | Forschungszentrum Jülich | 47 | 2014.64 | 1118 | 23.79 | 1.33 |
R. Persico | Institute for Archaeological and Monumental Heritage | 43 | 2012.55 | 747 | 17.37 | 0.85 |
J. Van Der Kruk | Forschungszentrum Jülich | 42 | 2014.29 | 1027 | 24.25 | 1.39 |
Scholars | Title | Journal | Impact Factor 2021 | Publication Year | Total Citations | Normal Citations |
---|---|---|---|---|---|---|
Giannopoulos [33] | “Modelling ground penetrating radar by GprMax” | Construction and Building Materials | 6.141 | 2005 | 409 | 11.32 |
Yoshikawa and Hinzman [34] | “Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska” | Permafrost and Periglacial Processes | 4.368 | 2003 | 334 | 10.29 |
Lambot et al. [35] | “Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties” | IEEE Transactions on Geoscience and Remote Sensing | 5.600 | 2004 | 299 | 8.74 |
Warren et al. [36] | “gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar” | Computer Physics Communications | 4.390 | 2016 | 293 | 20.97 |
Gurbuz et al. [37] | “Compressive sensing for subsurface imaging using ground penetrating radar” | Remote Sensing | 4.662 | 2009 | 234 | 3.93 |
Scholars | Title | Publication Year | Total Citations |
---|---|---|---|
Davis and Annan [39] | “Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy” | 1989 | 741 |
Neal [40] | “Ground-penetrating radar and its use in sedimentology: Principles, problems and progress” | 2004 | 491 |
Daniels [41] | “Ground penetrating radar” | 2004 | 453 |
Jol [42] | “Ground penetrating radar: Theory and applications” | 2009 | 423 |
Huisman et al. [43] | “Measuring soil water content with ground penetrating radar: A review” | 2003 | 334 |
Keywords | Total Occurrences | Average Publication Year | Average Citations | Average Normal Citations |
---|---|---|---|---|
Ground penetrating radar | 2960 | 2014.25 | 15.53 | 1.00 |
Non-destructive testing | 160 | 2014.80 | 18.69 | 1.32 |
Geophysics | 128 | 2013.50 | 18.34 | 1.02 |
Electrical resistivity tomography | 122 | 2014.31 | 11.81 | 0.63 |
Radar | 110 | 2010.65 | 21.04 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshaboury, N.; Mohammed Abdelkader, E.; Al-Sakkaf, A.; Zayed, T. A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database. Eng 2023, 4, 984-1008. https://doi.org/10.3390/eng4010059
Elshaboury N, Mohammed Abdelkader E, Al-Sakkaf A, Zayed T. A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database. Eng. 2023; 4(1):984-1008. https://doi.org/10.3390/eng4010059
Chicago/Turabian StyleElshaboury, Nehal, Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf, and Tarek Zayed. 2023. "A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database" Eng 4, no. 1: 984-1008. https://doi.org/10.3390/eng4010059
APA StyleElshaboury, N., Mohammed Abdelkader, E., Al-Sakkaf, A., & Zayed, T. (2023). A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database. Eng, 4(1), 984-1008. https://doi.org/10.3390/eng4010059