Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wargo, C.; Snipes, C.; Roy, A.; Kerczewski, R. UAS Industry Growth: Forecasting Impact on Regional Infrastructure, Environment, and Economy. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–5. [Google Scholar]
- Doering, C. Growing Use of Drones Poised to Transform Agriculture. USA Today 2014, 23. [Google Scholar]
- AUVSI. The Economic Impact of Unmanned Aircraft Systems Integration in the United States; Association for Unmanned Vehicle Systems International (AUVSI) Economic Report; AUVSI: Denver, CO, USA, 2013. [Google Scholar]
- Hunt, E.R.; Daughtry, C.S.T. What Good Are Unmanned Aircraft Systems for Agricultural Remote Sensing and Precision Agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef] [Green Version]
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the U.S.: Potential, Policy, and Hype. Remote Sens. Appl. Soc. Environ. 2015, 2, 35–43. [Google Scholar] [CrossRef]
- Rodriguez, R. Perspective: Agricultural Aerial Application with Unmanned Aircraft Systems: Current Regulatory Framework and Analysis of Operators in the United States. Trans. ASABE 2021, 64, 1475–1481. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Behrendt, K.; Ehlers, M.-H.; Dillon, C.; Gabriel, A.; Huang, I.Y.; Kumwenda, I.; Mark, T.; Meyer-Aurich, A.; Milics, G.; et al. Lessons to Be Learned in Adoption of Autonomous Equipment for Field Crops. Appl. Econ. Perspect. Policy 2022, 44, 848–864. [Google Scholar] [CrossRef]
- Reger, M.; Bauerdick, J.; Bernhardt, H. Drones in Agriculture: Current and Future Legal Status in Germany, the EU, the USA and Japan. Landtechnik 2018, 73, 62–80. [Google Scholar]
- Srivastava, S.; Gupta, S.; Dikshit, O.; Nair, S. A Review of UAV Regulations and Policies in India. In Proceedings of the UASG 2019, Roorkee, India, 6–7 April 2019; Jain, K., Khoshelham, K., Zhu, X., Tiwari, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–325. [Google Scholar]
- Ayamga, M.; Tekinerdogan, B.; Kassahun, A. Exploring the Challenges Posed by Regulations for the Use of Drones in Agriculture in the African Context. Land 2021, 10, 164. [Google Scholar] [CrossRef]
- Sheets, K.D. The Japanese Impact on Global Drone Policy and Law: Why a Laggard United States and Other Nations Should Look to Japan in the Context of Drone Usage. Ind. J. Glob. Legal Stud. 2018, 25, 513. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Mo, J. The Application of Unmanned Aircraft Systems to Plant Protection in China. Precis. Agric. 2018, 19, 278–292. [Google Scholar] [CrossRef]
- Xiongkui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent Development of Unmanned Aerial Vehicle for Plant Protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field Evaluation of an Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Spray Volume on Deposition and the Control of Pests and Disease in Wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Woldt, W.; Martin, D.; Lahteef, M.; Kruger, G.; Wright, R.; McMechan, J.; Proctor, C.; Jackson-Ziems, T. Field Evaluation of Commercially Available Small Unmanned Aircraft Crop Spray Systems. In Proceedings of the 2018 ASABE Annual International Meeting, Dearborn, MI, USA, 31 July 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; p. 1. [Google Scholar]
- Martin, D.E.; Rodriguez, R.; Woller, D.A.; Reuter, K.C.; Black, L.R.; Latheef, M.A.; Taylor, M.; López Colón, K.M. Insecticidal Management of Rangeland Grasshoppers Using a Remotely Piloted Aerial Application System. Drones 2022, 6, 239. [Google Scholar] [CrossRef]
- Chen, H.; Lan, Y.; Fritz, B.K.; Hoffmann, W.C.; Liu, S. Review of Agricultural Spraying Technologies for Plant Protection Using Unmanned Aerial Vehicle (UAV). Int. J. Agric. Biol. Eng. 2021, 14, 38–49. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Martínez-de Dios, J.R.; Popa-Lisseanu, A.G.; Gray, R.J.; Alarcón, F.; Sánchez-Bedoya, C.A.; Viguria, A.; Ibáñez, C.; Negro, J.J.; Ollero, A.; et al. Development of a Fixed-Wing Drone System for Aerial Insect Sampling. Drones 2022, 6, 189. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Osamura, K.; Toyoda, H. Remote-Controlled Monitoring of Flying Pests with an Electrostatic Insect Capturing Apparatus Carried by an Unmanned Aerial Vehicle. Agriculture 2021, 11, 176. [Google Scholar] [CrossRef]
- Rodriguez III, R.; Leary, J.J.K.; Jenkins, D.M. Herbicide Ballistic Technology for Unmanned Aircraft Systems. Robotics 2022, 11, 22. [Google Scholar] [CrossRef]
- Lawrence, B.; Mundorff, K.; Keith, E. The Impact of UAS Aerial Ignition on Prescribed Fire: A Case Study in Multiple Ecoregions of Texas and Louisiana. Fire Ecol. 2022, 19, 11. [Google Scholar] [CrossRef]
- Perroy, R.L.; Meier, P.; Collier, E.; Hughes, M.A.; Brill, E.; Sullivan, T.; Baur, T.; Buchmann, N.; Keith, L.M. Aerial Branch Sampling to Detect Forest Pathogens. Drones 2022, 6, 275. [Google Scholar] [CrossRef]
- Krisanski, S.; Taskhiri, M.S.; Montgomery, J.; Turner, P. Design and Testing of a Novel Unoccupied Aircraft System for the Collection of Forest Canopy Samples. Forests 2022, 13, 153. [Google Scholar] [CrossRef]
- Charron, G.; Robichaud-Courteau, T.; La Vigne, H.; Weintraub, S.; Hill, A.; Justice, D.; Bélanger, N.; Lussier Desbiens, A. The DeLeaves: A UAV Device for Efficient Tree Canopy Sampling. J. Unmanned Veh. Syst. 2020, 8, 245–264. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Savkin, A.V.; Zhang, J. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones 2022, 6, 29. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Raparelli, E.; Bajocco, S. A Bibliometric Analysis on the Use of Unmanned Aerial Vehicles in Agricultural and Forestry Studies. Int. J. Remote Sens. 2019, 40, 9070–9083. [Google Scholar] [CrossRef]
- Skare, M.; Riberio Soriano, D. How Globalization Is Changing Digital Technology Adoption: An International Perspective. J. Innov. Knowl. 2021, 6, 222–233. [Google Scholar] [CrossRef]
- Jain, R.; Arora, A.; Raju, S.S. A Novel Adoption Index of Selected Agricultural Technologies: Linkages with Infrastructure and Productivity. Agric. Econ. Res. Rev. 2009, 22, 109–120. [Google Scholar]
- FAA Data Downloads: Air Operators. Available online: av-info.gov/dd_sublevel.asp?Folder=\AIROPERATORS (accessed on 24 November 2022).
- National Agricultural Statistics Service. Farms and Land in Farms 2021 Summary; United States Department of Agriculture: Washington, DC, USA, 2022.
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- United States House of Representatives. FAA Modernization and Reform Act of 2012; United States House of Representatives: Washington, DC, USA, 2012.
- Federal Aviation Administration. Weak Processes Have Led to a Backlog of Flight Standards Certification Applications; Federal Aviation Administration: Washington, DC, USA, 2014.
Variable | Sum of Squares | Degrees of Freedom | F | p | η2 |
---|---|---|---|---|---|
Number of Farms | 127.218 | 1 | 62.768 | <0.001 | 0.57 |
Manned Agricultural Aircraft Operators | 9.521 | 1 | 4.698 | 0.03 | 0.09 |
Residual | 95.26 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, R., III. Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng 2023, 4, 977-983. https://doi.org/10.3390/eng4010058
Rodriguez R III. Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng. 2023; 4(1):977-983. https://doi.org/10.3390/eng4010058
Chicago/Turabian StyleRodriguez, Roberto, III. 2023. "Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector" Eng 4, no. 1: 977-983. https://doi.org/10.3390/eng4010058
APA StyleRodriguez, R., III. (2023). Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng, 4(1), 977-983. https://doi.org/10.3390/eng4010058