A Review of Coastal Protection Using Artificial and Natural Countermeasures—Mangrove Vegetation and Polymers
Abstract
:1. Introduction
2. Coastal Engineering Protection
2.1. Hard Engineering Techniques
2.1.1. Seawall
2.1.2. Gabion
2.1.3. Offshore Detached Breakwater
2.2. Soft Engineering Techniques
2.2.1. Coral Reef
2.2.2. Mangrove Forest
Traits and Adaptation
- Extensive aerial rooting systems.
- Mechanisms for salt exclusion, tolerance, or secretion.
- Conservative resource-capture and growth strategies, including investments in buoyant, viviparous propagules for several species [47].
Experimental Models of Coastal Protection
3. Conclusions
4. Innovation and Future Research Direction
- The artificial models may lack the actual structural features and hydrodynamic resistance of the natural mangrove tree species it depicts, reducing accuracy when used in real-world applications. Further research should be undertaken to model the real-life properties of mangroves so that greater adaptability and resistance can be validated to real life applications.
- The use of digital devices should be adopted for future research to reduce human errors when taking the reading during the process of collecting data.
- The application of Artificial Intelligence and Machine Learning could be applied to predict the future wave reduction in using structural measure and nature based solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ketchum, B.H. The Water’s Edge: Critical Problems of the Coastal Zone; MIT Press: Cambridge, MA, USA, 1972; p. 414. [Google Scholar]
- Zanuttigh, B. Coastal flood protection: What perspective in a changing climate? The THESEUS approach. Environ. Sci. Policy 2011, 14, 845–863. [Google Scholar] [CrossRef]
- Bao, T.Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 2011, 53, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2010, 106, 7–29. [Google Scholar] [CrossRef]
- Parvathy, K.G.; Bhaskaran, P.K. Wave attenuation in presence of mangroves: A sensitivity study for varyingbottom slopes. J. Ocean. Clim. Sci. Technol. Impacts 2017, 8, 126–134. [Google Scholar]
- Othman, M.A. Value of mangroves in coastal protection. Hydrobiology 1994, 258, 277–282. [Google Scholar] [CrossRef]
- Husrin, S.; Strusinska, A.; Oumeraci, H. Experimental study on tsunami attenuation by mangrove forest. J. Earth Planets Space Vol. 2012, 64, 973–989. [Google Scholar] [CrossRef] [Green Version]
- Strusińska-Correia, A.; Husrin, S.; Oumeraci, H. Attenuation of solitary wave by parametized flexible mangrove models. Coast. Eng. Proc. 2014, 1, 1–34. [Google Scholar]
- Hashim, A.M.; Catherine, S.M.P. A Laboratory Study on Wave Reduction by Mangrove Forests. APCBEE Procedia 2013, 5, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, H. The Use of Mangroves in Coastal Protection. In Proceedings of the COPEDEC 2012: The 8th International Conference on Coastal and Port Engineering in Developing Countries, Chennai, India, 20–24 February 2012; pp. 20–24. [Google Scholar]
- Yuanita, N.; Kurniawan, A.; Paramashanti, P.; Laksmi, A.A. Natural Coastal Protection System Preliminary Design. J. Subsea Offshore-Sci. Eng. 2018, 14, 1–5. [Google Scholar]
- Yuanita, N.; Kurniawan, A.; Setiawan, H.; Hasan, F.; Khasanah, M. Physical model of natural coastal protection system: Wave transmission over mangrove seedling trees. J. Coast. Res. 2019, 91, 176–180. [Google Scholar] [CrossRef]
- Özyurt, G.; Ergin, A.Y.Ş.E.N. Application of Sea Level Rise Vulnerability Assessment Model to Selected Coastal Areas of Turkey. J. Coast. Res. 2019, 56, 248–251. [Google Scholar]
- Nicholls, R. Coastal megacities and climate change. GeoJournal 1995, 37, 369–379. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A Global Analysis of Human Settlement in Coastal Zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Firth, L.B.; Thompson, R.C.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.; Bozzeda, F.; Ceccherelli, V.; Colangelo, M.A.; Evans, A.; et al. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coast. Eng. 2014, 87, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Sundar, V.; Murali, K. Planning of Coastal Protection Measures along Kerala Coast: Paper presented at the State Government of Kerala by IIT Madras; Department of Ocean Engineerimg, Indian Institute of Technology: Madras, Chennai, India, 2007. [Google Scholar]
- Sukanya, R.; Sundar, V.; Sannasiraj, S.A. Geo-Technical Stability and Sensitivity Analysis of Geo-Synthetic Seawall at Pallana Beach, Kerala, India. In Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019); Springer: Singapore, 2021; pp. 15–26. [Google Scholar] [CrossRef]
- Pilarczyk, K.W.; Zeidler, R.B. Offshore Breakwaters and Shore Evolution Control; Rotterdam, A.A., Ed.; Balkema Publishers: Leiden, The Netherlands, 1996. [Google Scholar]
- Phan, K.L.; Stive, M.J.; Zijlema, M.; Truong, H.S.; Aarninkhof, S.G. The effects of wave non-linearity on wave attenuation by vegetation. Coast. Eng. 2019, 147, 63–74. [Google Scholar] [CrossRef]
- Kench, P.S.; Brander, R.W. Wave processes on coral reef Flats: Implications for reef geomorphology using Australian case studies. J. Coast. Res. 2006, 22, 209–223. [Google Scholar] [CrossRef]
- Monismith, S.G. Hydrodynamics of Coral Reefs. Annu. Rev. Fluid Mech. 2007, 39, 37–55. [Google Scholar] [CrossRef]
- Cochard, R.; Ranamukhaarachchi, S.L.; Shivakoti, G.P.; Shipin, O.V.; Edwards, P.J.; Seeland, K.T. The 2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 3–40. [Google Scholar] [CrossRef]
- Fernando, H.; Samarawickrama, S.; Balasubramanian, S.; Hettiarachchi, S.; Voropayev, S. Effects of porous barriers such as coral reefs on coastal wave propagation. J. Hydro-Environ. Res. 2008, 1, 187–194. [Google Scholar] [CrossRef]
- Woodley, J.D. The incidence of hurricanes on the north coast of Jamaica since 1870: Are the classic reef descriptions atypical? Hydrobiologia 1992, 247, 133–138. [Google Scholar] [CrossRef]
- Perry, C.T.; Smithers, S.G. Cycles of coral reef ‘turn-on’, rapid growth and ‘turn-off’ over the past 8500 years: A context for understanding modern ecological states and trajectories. Glob. Change Biol. 2011, 17, 76–86. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Reef-island topography and the vulnerability of atolls to sea-level rise. Glob. Planet. Chang. 2008, 62, 77–96. [Google Scholar] [CrossRef]
- Webb, A.P.; Kench, P.S. The dynamic response of reef islands to sea level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Glob. Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
- Briguglio, L. The Vulnerability Index and small island developing states: A review of conceptual and methodological issues. In Paper Prepared for the AIMS View of Conceptual and Methodological Issues, Praia, Cape Verde; UNESCO: Paris, France, 2003; pp. 1–5. [Google Scholar]
- Moore, W.S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 1999, 65, 111–125. [Google Scholar] [CrossRef]
- Brander, R.W.; Kench, P.S.; Hart, D. Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Mar. Geol. 2004, 207, 169–184. [Google Scholar] [CrossRef]
- Gourlay, M. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two dimensional horizontal reef. Coast. Eng. 1996, 27, 161–193. [Google Scholar] [CrossRef]
- Gourlay, M. Wave set-up on coral reefs. 2. set-up on reefs with various profiles. Coast. Eng. 1996, 28, 17–55. [Google Scholar] [CrossRef]
- Lacambra, C.; Spencer, T.; Moeller, I. Tropical Coastal Ecosystems as Coastal Defences. In The Role of Environmental Management and Eco-Engineering in Disaster Risk Reduction and Climate Change Adaptation; ProAct Network: Genolier, Switzerland, 2008. [Google Scholar]
- Sheppard, C.; Dixon, D.J.; Gourlay, M.; Sheppard, A.; Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar. Coast. Shelf Sci. 2005, 64, 223–234. [Google Scholar] [CrossRef]
- McIvor, A.L.; Möller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves. In Natural Coastal Protection Series: Report 1. The Nature Conservancy; University of Cambridge: Cambridge, UK; Wetlands International: Cambridge, UK, 2012. [Google Scholar]
- Shepard, C.C.; Crain, C.M.; Beck, M.W. The protective role of coastal marshes: A systematic Review and Meta-analysis. PLoS ONE 2011, 6, e27374. [Google Scholar] [CrossRef]
- Duke, N. Mangrove floristics and biogeography. In Tropical Mangrove Ecosystems; American Geophysical Union: Washington, DC, USA, 1992. [Google Scholar]
- Primavera, J.; Sadaba, R.; Lebata, M.; Hazel, J.; Altamirano, J. Handbook of Mangrove in the Philippines—Panay; SEAFDEC Aquaculture Department: Iloilo, Philippines, 2004. [Google Scholar]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, 10095. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N.C. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- FAO. The World’s Mangroves 1980–2005; FAO: Rome, Italy, 2007. [Google Scholar]
- Hogarth, P. The Biology of Mangroves and Seagrasses; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Tomlinson, P. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Alongi, D. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Balun, L. Functional Diversity in the Hyper-Diverse Mangrove Communities in Papua ew Guinea. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2011. [Google Scholar]
- Primavera, J. Field Guide to Philippines Mangroves. Zoological Society of London. 2009. Available online: https://www.zsl.org/sites/default/files/media/2015-06/Field% (accessed on 8 October 2022).
- Sabari, A.A.; Oates, A.R.; Akib, S. Experimental Investigation of Wave Attenuation Using a Hybrid of Polymer-Made Artificial Xbloc Wall and Mangrove Root Models. Eng 2021, 2, 229–248. [Google Scholar] [CrossRef]
- Safari, I.; Mouaze, D.; Ropert, F.; Haquin, S.; Ezersky, A. Hydraulic stability and wave overtopping of Starbloc® armored moundbreakwaters. Ocean. Eng. 2018, 151, 268–275. [Google Scholar] [CrossRef]
- Hoque, A.; Husrin, S.; Oumeraci, H. Laboratory studies of wave attenuation by coastal forest under storm surge. Coast. Eng. J. 2018, 60, 225–238. [Google Scholar] [CrossRef]
- Van Zwicht, B. Effect of the Concrete Density on the Stability of Xbloc Armour Unit. Master’s Thesis, Delft University, Delft, The Netherlands, 2009. Hydraulic Engineering Section. [Google Scholar]
- Sundar, V.; Sannasiraj, S.A.; Babu, S.R. Sustainable hard and soft measures for coastal protection—Case studies along the Indian Coast. Mar. Georesources Geotechnol. 2022, 40, 600–615. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest. Adv. Water Resour. 2019, 131, 103376. [Google Scholar] [CrossRef]
- Temmerman, S.; Horstman, E.M.; Krauss, K.W.; Mullarney, J.C.; Pelckmans, I.; Schoutens, K. Marshes and Mangroves as Nature-Based Coastal Storm Buffers. Annu. Rev. Mar. Sci. 2022, 15, 95–118. [Google Scholar] [CrossRef]
Coral Reef | Coastal Wetlands | |
---|---|---|
Ecosystem determinants |
|
|
Abiotic Determinants |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amos, D.; Akib, S. A Review of Coastal Protection Using Artificial and Natural Countermeasures—Mangrove Vegetation and Polymers. Eng 2023, 4, 941-953. https://doi.org/10.3390/eng4010055
Amos D, Akib S. A Review of Coastal Protection Using Artificial and Natural Countermeasures—Mangrove Vegetation and Polymers. Eng. 2023; 4(1):941-953. https://doi.org/10.3390/eng4010055
Chicago/Turabian StyleAmos, Deborah, and Shatirah Akib. 2023. "A Review of Coastal Protection Using Artificial and Natural Countermeasures—Mangrove Vegetation and Polymers" Eng 4, no. 1: 941-953. https://doi.org/10.3390/eng4010055
APA StyleAmos, D., & Akib, S. (2023). A Review of Coastal Protection Using Artificial and Natural Countermeasures—Mangrove Vegetation and Polymers. Eng, 4(1), 941-953. https://doi.org/10.3390/eng4010055