Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System
Abstract
:1. Introduction
1.1. Structure of the Article
1.2. Requirements for the Procedure Model
- To develop the model and enable a systematic approach for transparent results, an iterative and step-by-step approach and a description of the current situation should be provided. (1)
- Furthermore, due to the complexity of the assembly processes described above, the model should focus on the HRC and the assembly processes, considering the performance capabilities of humans and robots. (1)
- The method must include the possibility of a knockout (K.O.) criterion for HRC so that the evaluation can be terminated directly to prevent unnecessary planning processes. (2)
- Time measurement, more specifically the use of MTM, is necessary to ensure industry adaptability due to the method’s high prevalence. (2)
- In addition, the method’s evaluation criteria must be transparent regarding the suitability of the automation or the HRC for good reproducibility. (3)
- Finally, the results should be transparent and comparable next to economic efficiency. (3)
2. State of the Art
2.1. Evaluation Methods with the Scope of an Assembly-Friendly Product Design
2.2. Evaluation Methods with the Scope of Human–Robot Collaboration
2.3. Classification of Described Literature
3. Modelling of MTM-1 on HRC
3.1. Analysis of the Actual State
3.2. Evaluation of the Automation Potential
3.3. Evaluation of the Human–Robot Collaboration Potential
- Allocating the activities of the SP to humans and robots and subsequent testing of the changed DAS.
- Testing of possible simultaneous execution of the activities.
3.4. Assessment of Economic Efficiency, Detailed Planning, and Optimization Potential
4. Evaluation Using the Industrial Example of Water Electrolysis
5. Conclusions of the Procedure Model MTM-1-HRC
6. Outlook and Further Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smolinka, T.; Wiebe, N.; Sterchele, P.; Palzer, A.; Lehner, F.; Jansen, M.; Kiemel, S.; Miehe, R.; Wahren, S.; Zimmermann, F. Studie IndWEDe: Industrialisierung der Wasser Elektrolyse in Deutschland: Chancen und Herausforderungen für Nachhaltigen Wasserstoff für Verkehr, Strom und Wärme; NOW GmbH: Berlin, Germany, 2018. [Google Scholar]
- Hebling, C.; Ragwitz, M.; Fleiter, T.; Groos, U.; Härle, D.; Held, A.; Jahn, M.; Müller, N.; Pfeifer, T.; Plötz, P.; et al. Eine Wasserstoff-Roadmap für Deutschland; Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2019. [Google Scholar]
- Bokranz, R.; Landau, K. Handbuch Industrial Engineering: Produktivitätsmanagement mit MTM, 2nd ed.; Schäffer-Poeschel: Stuttgart, Germany, 2012. [Google Scholar]
- Neb, A.; Göke, J. Generation of assembly restrictions and evaluation of assembly criteria from 3D assembly models by collision analysis. Procedia CIRP 2021, 97, 33–38. [Google Scholar] [CrossRef]
- Linsinger, M.; Stecken, J.; Kutschinski, J.; Kuhlenkötter, B. Orts- und aufgabenflexibler Einsatz von Leichtbaurobotern in der Montage. Wt Werkstattstech. Online 2019, 109, 94–99. [Google Scholar] [CrossRef]
- Becker, T. Prozesse in Produktion und Supply Chain Optimieren, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Alfadhlani; Samadhi, T.; Ma’ruf, A.; Toha, I. A Framework for the Development of Automatic DFA Method to Minimize the Number of Components and Assembly Reorientations. IOP Conf. Ser. Mater. Sci. Eng. 2018, 319, 12083. [Google Scholar] [CrossRef]
- Eskilander, S. Design for Automatic Assembly: A Method for Product Design: DFA2. Dissertation; Kungliga Tekniska Högskolan: Stockholm, Sweden, 2001. [Google Scholar]
- Ezpeleta, I.; Justel, D.; Bereau, U.; Zubelzu, J. DFA-SPDP, a new DFA method to improve the assembly during all the product development phases. Procedia CIRP 2019, 84, 673–679. [Google Scholar] [CrossRef]
- Formentini, G.; Rodríguez, N.; Favi, C. Design for manufacturing and assembly methods in the product development process of mechanical products: A systematic literature review. Int. J. Adv. Manuf. Technol. 2022, 120, 4307–4334. [Google Scholar] [CrossRef]
- Madappilly, P.; Mork, O. Review and modification of DFA2 methodology to support design for automatic assembly (DFAA) in the maritime industry. Procedia CIRP 2021, 100, 744–749. [Google Scholar] [CrossRef]
- Shetty, D.; Ali, A. A new design tool for DFA/DFD based on rating factors. Assem. Autom. 2015, 35, 348–357. [Google Scholar] [CrossRef]
- Trommnau, J. Methodik zur Bewertung und Optimierung der Automatisierungseignung des Zusammenbaus von Bauteilkombinationen mit Forminstabilen Einzelteilen. 2022. Available online: https://elib.uni-stuttgart.de/bitstream/11682/12555/3/2022TrommnauJerome.pdf (accessed on 14 May 2024).
- Boothroyd, G. Design for assembly—The key to design for manufacture. Int. J. Adv. Manuf. Technol. 1987, 2, 3–11. [Google Scholar] [CrossRef]
- Boothroyd, G.; Dewhurst, P.; Knight, W.A. (Eds.) Product Design for Manufacture and Assembly; Dekker: New York, NY, USA, 2002. [Google Scholar]
- Miles, B.L. Design for Assembly—A Key Element within Design for Manufacture. Proceedings of the Institution of Mechanical Engineers. Part D J. Automob. Eng. 1989, 203, 29–38. [Google Scholar] [CrossRef]
- Sturges, R.H. A quantification of manual dexterity: The design for an assembly calculator. Robot. Comput.-Integr. Manuf. 1989, 6, 237–252. [Google Scholar] [CrossRef]
- Desai, A.; Mital, A. Facilitating design for assembly through the adoption of a comprehensive design methodology. Int. J. Ind. Eng. Theory Appl. Pract. 2010. [Google Scholar] [CrossRef]
- Bauer, W.; Rally, P.; Scholtz, O. Schnelle Ermittlung sinnvoller MRK-Anwendungen. Z. Für Wirtsch. Fabr. 2018, 113, 554–559. [Google Scholar] [CrossRef]
- Weber, M.-A.; Schüth, N.J. Integration der Mensch-Roboter-Kollaboration unter Beachtung technischer und personeller Rahmenbedingungen. In Frühjahrskongress; Gesellschaft für Arbeitswissenschaft (GfA): Dortmund/Berlin, Germany, 2020; Available online: https://www.arbeitswissenschaft.net/fileadmin/Downloads/Angebote_und_Produkte/Publikationen/GfA_2020_B-13-5_Weber_Schueth.pdf (accessed on 14 May 2024).
- Petzoldt, C.; Keiser, D.; Siesenis, H.; Beinke, T.; Freitag, M. Ermittlung und Bewertung von Einsatzpotenzialen der Mensch-Roboter-Kollaboration. Z. Für Wirtsch. Fabr. 2021, 116, 8–15. [Google Scholar] [CrossRef]
- Hees, F.; Müller-Abdelrazeq, S.L.; Langer, T.; Voss, M.; Schmitt, R.; Hüttemann, G. (Eds.) Projektatlas Kompetenz Montage: Kollaborativ und wandlungsfähig; RWTH Aachen University Lehrstuhl für Informationsmanagement im Maschinenbau: Aachen, Germany, 2019. [Google Scholar]
- Ermer, A.-K.; Seckelmann, T.; Barthelmey, A.; Lemmerz, K.; Glogowski, P.; Kuhlenkötter, B.; Deuse, J. A Quick-Check to Evaluate Assembly Systems’ HRI Potential. In Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter; Schüppstuhl, T., Tracht, K., Roßmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 128–137. [Google Scholar]
- Linsinger, M.; Sudhoff, M.; Lemmerz, K.; Glogowski, P.; Kuhlenkötter, B. Task-based Potential Analysis for Human-Robot Collaboration within Assembly Systems. In Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter; Schüppstuhl, T., Tracht, K., Franke, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–12. [Google Scholar]
- Teiwes, J.; Banziger, T.; Kunz, A.; Wegener, K. Identifying the Potential of Human-Robot Collaboration in Automotive Assembly Lines using a Standardised Work Description. In Proceedings of the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; IEEE: New York, NY, USA, 2016; pp. 78–83. [Google Scholar]
DAS | Average | EC1 | EC2 | EC3 | EC4 | EC5 | EC6 | EC7 | EC8 | EC9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
R-B < 60 cm | 2 | 2.33 | 3 | 2 | \ | 3 | 1 | 3 | \ | \ | 2 |
G | 3 | 3 | \ | 3 | 3 | \ | \ | 3 | \ | \ | \ |
M-C < 60 cm | 3 | 3 | 3 | \ | \ | 3 | \ | 3 | \ | 3 | 3 |
M-B > 60 cm | 2 | 2.80 | 2 | \ | \ | 3 | \ | 3 | \ | 3 | 3 |
R-A < 60 cm | 3 | 3 | 3 | 3 | \ | 3 | 3 | 3 | \ | \ | 3 |
P2SE | 2 | 2.60 | \ | \ | 3 | \ | \ | 3 | 3 | 2 | 2 |
RL1 | 3 | 3 | \ | \ | \ | \ | \ | 3 | \ | \ | 3 |
M-B < 60 cm | 3 | 3 | 3 | \ | \ | 3 | \ | 3 | \ | 3 | 3 |
P1SSE | 3 | 3 | \ | \ | 3 | \ | \ | 3 | 3 | 3 | 3 |
APA | 3 | 3 | \ | \ | \ | \ | \ | 3 | \ | \ | 3 |
Structure of Sub-Processes | ||||||
---|---|---|---|---|---|---|
No. | MTM-1 TMU | Automation TMU | Automation DAS | HRC TMU | HRC DAS | Total Time Saving |
1 | 133.5 | 117.0 | 2.82 | 91.5 | 2.60 | 42.0 |
2 | 700.6 | 697.3 | 2.76 | 691.7 | 3.00 | 8.9 |
3 | 130.8 | 127.5 | 2.90 | 127.5 | 3.00 | 3.3 |
4 | 341.3 | 336.7 | 2.86 | 309.9 | 2.96 | 31.4 |
5 | 165.0 | 164.8 | 2.31 | 164.8 | 3.00 | 0.2 |
Sum | 1471.2 | 1446.3 | - | 1385.4 | - | 85.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakschik, M.; Endemann, F.; Adler, P.; Lamers, L.; Kuhlenkötter, B. Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System. Eng 2024, 5, 967-982. https://doi.org/10.3390/eng5020053
Jakschik M, Endemann F, Adler P, Lamers L, Kuhlenkötter B. Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System. Eng. 2024; 5(2):967-982. https://doi.org/10.3390/eng5020053
Chicago/Turabian StyleJakschik, Malte, Felix Endemann, Patrick Adler, Lennart Lamers, and Bernd Kuhlenkötter. 2024. "Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System" Eng 5, no. 2: 967-982. https://doi.org/10.3390/eng5020053
APA StyleJakschik, M., Endemann, F., Adler, P., Lamers, L., & Kuhlenkötter, B. (2024). Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System. Eng, 5(2), 967-982. https://doi.org/10.3390/eng5020053