An Investigation of Increased Power Transmission Capabilities of Elastic–Plastic-Designed Press–Fit Connections Using a Detachable Joining Device
Abstract
:1. Introduction
1.1. Research Problem
1.2. Research Objective
1.3. Research Approach
2. Definitions and Fundamentals
2.1. Definition of the Press–Fit Geometry
2.1.1. Geometry for Transition Radius Analyses
2.1.2. Geometry for Junction Geometry Analyses
3. Materials and Methods
3.1. Characterization of the Material Model
3.2. Definition of the Finite Element Model Used for the Numerical Simulations
3.3. Experimental Procedure for the Validation of the Simulation Model
4. Results
4.1. Analysis of the Effect of Large Transition Radii R on the Stress State of the Press–Fit Connection
4.2. Analysis of the Junction Geometry on Its Influence on the Stress State of the Press–Fit Connection
Shaft Geometry | Length of the Radius Geometry | Mass of the Radius Geometry |
---|---|---|
| l1 = 1.5 mm | 8.3 g |
| l2 = 5.0 mm | 27.4 g |
| l3 = 28 mm | 153.8 g |
4.3. Analysis of Manufacturing Tolerances on Their Influence on the Stress State of the Press–Fit Connection
4.3.1. Case of a Larger Shaft Diameter DS
4.3.2. Case of a Larger Joining Device Diameter DJD
4.4. Experimental Validation
5. Discussion
5.1. Discussion and Design Recommendation
5.2. Summary of Key Findings
6. Conclusions
- (1)
- The axial length of the transition radius and thus its size are no longer restricted by the installation-space limits of the assembly.
- (2)
- The mass of the press–fit connection will not be affected by the size of the transition radius.
- (1)
- A transition radius of at least 4000 mm should be selected for a high mean value of the pressure between the shaft and hub, as well as a uniform distribution of the pressure and the plastic strains.
- (2)
- The upper limit of the joining device’s tolerance field should never exceed the lower limit of the shaft’s tolerance field.
- (3)
- The upper limit of the shaft’s tolerance field should not exceed the lower limit of the joining device’s tolerance field by more than 1.33‰ of the diameter of the contact interface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dausch, V.; Kröger, J.; Kreimeyer, M. An AI-Based Approach to Optimize Stress in Shrink Fits. Proc. Des. Soc. 2022, 2, 1549–1558. [Google Scholar] [CrossRef]
- Gamer, U. The Rotating Elastic-Plastic Shrink Fit with Hardening. Acta Mech. 1986, 61, 15–27. [Google Scholar] [CrossRef]
- Gamer, U. The Shrink Fit with Elastic-Plastic Hub Exhibiting Constant Yield Stress Followed by Hardening. Int. J. Solids Struct. 1987, 23, 1219–1224. [Google Scholar] [CrossRef]
- Kittsteiner, J.; Ehrlenspiel, K. Kostenanalyse von Welle-Nabe-Verbindungen in Zahnradgetrieben—Abschlussbericht zum FVA-Forschungsvorhaben Nr. 134, Heft 293; Forschungsvereinigung Antriebstechnik e.V.: Frankfurt, Germany, 1989. [Google Scholar]
- Kollmann, F.G. Welle-Nabe-Verbindungen—Gestaltung, Auslegung, Auswahl; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Baldanzini, N. A General Formulation for Designing Interference-Fit Joints with Elastic-Plastic Components. J. Mech. Des. 2004, 126, 737–743. [Google Scholar] [CrossRef]
- Kröger, J.; Binz, H. Untersuchungen zu Auslegungsgrenzen und Steigerung der Maximalen Übermaße bei Zylindrischen Pressverbindungen—Abschlussbericht zum FVA-Forschungsvorhaben Nr. 810 I, Heft 1399; Forschungsvereinigung Antriebstechnik e.V.: Frankfurt, Germany, 2020. [Google Scholar]
- Falter, J.; Binz, H.; Kreimeyer, M. Investigations on design limits and improved material utilization of press-fit connections using elastic-plastic design. Appl. Eng. Sci. 2023, 13, 1–14. [Google Scholar] [CrossRef]
- Önöz, I.E. Die Auslegung Elastisch-Plastisch Beanspruchter Querpressverbände Unter Berücksichtigung der Werkstoffverfestigung; VDI-Verlag: Düsseldorf, Germany, 1983. [Google Scholar]
- Glöggler, C. Untersuchungen an Spannungshomogenisierten und Zylindrischen Pressverbindungen unter Torsionsbelastung. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2003. [Google Scholar]
- Blacha, M. Grundlagen zur Berechnung und Gestaltung von Querpressverbänden mit Naben aus Monolithischer Keramik. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2009. [Google Scholar]
- Heydt, J.F. Untersuchungen zum Dynamischen Verhalten von Topologisch Optimierten Pressverbänden bei Umlaufbiegung. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Lohrengel, A.; Schäfer, G.; Mänz, T. Untersuchung von Pressverbindungen mit gerändelter Welle—Abschlussbericht zum FVA-Forschungsvorhaben Nr. 658 I, Heft 1247; Forschungsvereinigung Antriebstechnik e.V.: Frankfurt, Germany, 2017. [Google Scholar]
- Li, T.; Zheng, J.; Chen, Z. Description of full-range strain hardening behavior of steels. SpringerPlus Eng. 2016, 5, 1316. [Google Scholar] [CrossRef]
- Ramberg, W.; Osgood, W.R. Description of Stress-Strain-Curves by Three Parameters; NACA Technical Note No. 902; National Advisory Committee for Aeronautics (NACA): Washington, DC, USA, 1943. [Google Scholar]
- Hertelé, S.; De Waele, W.; Denys, R. A generic stress-strain model for metallic materials with two-stage strain hardening behavior. Int. J. Non-Linear Mech. 2011, 46, 519–531. [Google Scholar] [CrossRef]
- DIN 7190-1:2017-02; Interference Fits—Part 1: Calculation and Design Rules for Cylindrical Self-Locking Pressfits. Beuth: Berlin, Germany, 2017.
- Ulrich, D.; Binz, H. Einfluss von Schmierstoffen aus der Massivumformtechnik auf die Reibdauerbeanspruchung mikroschlupfanfälliger Welle-Nabe-Verbindungen—Numerische und experimentelle Untersuchungen anhand zylindrischer Querpressverbände mit beschichteten Wellen unter wechselnder Torsionslast. In Proceedings of the VDI-Fachtagung Welle-Nabe-Verbindungen Gestaltung—Fertigung—Anwendungen, Stuttgart, Germany, 28 November 2016. [Google Scholar] [CrossRef]
- Kröger, J.; Binz, H.; Wagner, M. Spannungsoptimierung von Pressverbindungen mit additiv gefertigten Naben—Numerische und experimentelle Untersuchungen. In Proceedings of the VDI-Fachtagung Welle-Nabe-Verbindungen Dimensionierung—Fertigung—Anwendung, Stuttgart, Germany, 26–27 November 2018. [Google Scholar] [CrossRef]
Material of the Shaft | Material of the Hub | Diameter Ratio of the Hub QHub | Interference ξ Related to Dint | Diameter of the Interface Dint | Length-to-Diameter Ratio l/Dint |
---|---|---|---|---|---|
42CrMo4 +QT | EN AW-5083 | 0.5 | 10‰ | 30 mm | 0.533 |
Material | Young’s Modulus E | Yield Strength Rp0.2 | Tensile Strength Rm | Ultimate Strain A |
---|---|---|---|---|
42CrMo4 +QT | 210 GPa | 809 MPa | 1081 MPa | 14% |
EN AW-5083 | 72 GPa | 181 MPa | 354 MPa | 26% |
Finding | Details and Recommendations | Section |
---|---|---|
| The pressure reduction Δp occurring for the elastic–plastic press–fit connection in the axial hub center can be reduced by 85% for a transition radius of R = 4000 mm and up to 90% for R = 8000 mm compared to the reference radius of R = 50 mm. | Section 4.1 |
| The axial length of large transition radii R described in row (1) prevents their use in most applications, if these are conventionally provided as part of the shaft. Using a detachable joining device enables the use of such large transition radii R to obtain up to 90% of the pressure achieved in row (1) with a 95% reduction in the non-usable shaft length. | Section 4.2 and Section 5.1 |
| Identified tolerance fields for an improved transmission capacity (cf., Figure 14):
| Section 4.3 and Section 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falter, J.; Herburger, D.; Binz, H.; Kreimeyer, M. An Investigation of Increased Power Transmission Capabilities of Elastic–Plastic-Designed Press–Fit Connections Using a Detachable Joining Device. Eng 2024, 5, 1155-1172. https://doi.org/10.3390/eng5030063
Falter J, Herburger D, Binz H, Kreimeyer M. An Investigation of Increased Power Transmission Capabilities of Elastic–Plastic-Designed Press–Fit Connections Using a Detachable Joining Device. Eng. 2024; 5(3):1155-1172. https://doi.org/10.3390/eng5030063
Chicago/Turabian StyleFalter, Jan, Daniel Herburger, Hansgeorg Binz, and Matthias Kreimeyer. 2024. "An Investigation of Increased Power Transmission Capabilities of Elastic–Plastic-Designed Press–Fit Connections Using a Detachable Joining Device" Eng 5, no. 3: 1155-1172. https://doi.org/10.3390/eng5030063
APA StyleFalter, J., Herburger, D., Binz, H., & Kreimeyer, M. (2024). An Investigation of Increased Power Transmission Capabilities of Elastic–Plastic-Designed Press–Fit Connections Using a Detachable Joining Device. Eng, 5(3), 1155-1172. https://doi.org/10.3390/eng5030063