Improved Quantum Particle Swarm Optimization of Optimal Diet for Diabetic Patients
Abstract
:1. Introduction
2. Classical and Quantum Random Particle Swarm Approaches
2.1. Standard PSO
Algorithm 1 PSO Pseudo-code |
|
2.2. An Overview of Quantum-Behaved Particle Swarm Optimization
Algorithm 2 QPSO Pseudo Code [3] |
|
2.3. Quantum Particle Swarm Optimization Using Gaussian Mutation (GQPSO)
3. Nutritional Optimization Problem Modeling for Diabetics
3.1. Information and Variables Related to Diet Problems
3.2. Mathematical Representation of Constraints
3.2.1. Requirements for Beneficial Nutrients
3.2.2. Requirements Concerning Harmful Nutrients
3.3. Evaluation of Diet Problem Parameter
Name of Foods | Vitamin A | Vitamin C | Vitamin E | Vitamin B6 | Vitamin B12 | Calcium (Ca) | Phosphorus | Magnesium | Potassium | Iron (Fe) | Zinc | Calories | Protein | Carbohydrate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apricot | 0 | 5.5 | 0.6 | 0.1 | 0 | 15.6 | 16.6 | 8.7 | 237 | 0.3 | 0.1 | 49 | 0.9 | 9 |
Dried Apricot | 0 | 1 | 4 | 0.2 | 0 | 61.2 | 68.3 | 36.5 | 1090 | 4.3 | 0.3 | 271 | 3.1 | 53 |
Garlic | 0 | 17 | 0 | 1.2 | 0 | 17.7 | 161 | 20.7 | 555 | 1.3 | 0.8 | 131 | 7.9 | 21.5 |
Almond | 0 | 0.4 | 14.6 | 0.1 | 0 | 248 | 416 | 232 | 668 | 3 | 3.3 | 634 | 25.4 | 1.5 |
Pineapple | 0 | 12 | 0.1 | 0.1 | 0 | 20.3 | 11 | 19.8 | 170 | 0.2 | 0.7 | 53 | 0.4 | 11 |
Canned Pineapple | 0 | 10.4 | 0.1 | 0.1 | 0 | 14.3 | 5 | 13.3 | 105 | 0.2 | 0.1 | 82 | 0.4 | 19.1 |
Artichoke | 0 | 10.3 | 0.2 | 0.1 | 0 | 39 | 49.2 | 29.5 | 380 | 0.7 | 0.5 | 44 | 2.8 | 4.9 |
Asparagus | 0 | 16 | 0 | 0 | 0 | 19.9 | 51.5 | 6.3 | 198 | 0.7 | 0.4 | 30 | 2.7 | 3.2 |
Eggplant | 0 | 1.3 | 0 | 0.1 | 0 | 20.1 | 15 | 15 | 123 | 0.3 | 0.1 | 35 | 0.8 | 6.3 |
Avocado | 0 | 7.5 | 2.4 | 0.2 | 0 | 10.8 | 41.9 | 27.1 | 412 | 0.5 | 0.5 | 69 | 1.8 | 3.13 |
Baguette | 0 | 0 | 0.1 | 0.1 | 0.0001 | 52.4 | 110 | 19.7 | 158 | 1.5 | 0.7 | 286 | 9.3 | 56.6 |
Banana | 0 | 6.5 | 0.3 | 0.3 | 0 | 4.5 | 17.5 | 32.8 | 411 | 0.3 | 0.2 | 94 | 1.2 | 20.5 |
Beetroot | 0 | 5 | 0 | 0 | 0 | 18.4 | 31.1 | 16.3 | 266 | 0.7 | 0.3 | 43 | 2.3 | 7.2 |
Cooked Egg White | 0 | 0 | 0 | 0 | 0.00001 | 6.7 | 14.7 | 9.7 | 147 | 0.1 | 0 | 46 | 10.3 | 0.7 |
Cooked Broccoli | 0.4 | 0.3 | 0.8 | 0.3 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0.7 | 97 | 21.5 | 1.1 |
Broccoli | 0 | 37.3 | 1 | 0.2 | 0 | 55.8 | 56 | 11.5 | 148 | 1 | 0.3 | 29 | 2.1 | 2.8 |
Peanut | 0 | 0.7 | 12.2 | 0.5 | 0 | 4.9 | 370 | 70.6 | 54.2 | 0 | 2.8 | 636 | 25.9 | 14.8 |
Raw Carrot | 0 | 16 | 0 | 0 | 0 | 19.9 | 51.5 | 6.3 | 198 | 0.7 | 0.4 | 30 | 2.7 | 3.2 |
Peeled, Cooked Carrot (boiled) | 0 | 4 | 0.6 | 0.1 | 0 | 26.2 | 20.4 | 11.9 | 243 | 0.3 | 0.2 | 36 | 0.8 | 6.6 |
Celery | 0 | 8 | 0.2 | 0.1 | 0 | 53.3 | 27.2 | 9.2 | 269 | 0.3 | 0.1 | 16 | 1.2 | 1.2 |
Cooked Celery Stalk | 0 | 4 | 0.2 | 0.1 | 0 | 53.3 | 25 | 9 | 284 | 0.4 | 0.1 | 13 | 0.8 | 1.6 |
Name of Foods | Sodium | Total Fat | Cholesterol | Saturated Fat |
---|---|---|---|---|
Apricot | 1.00 | 0.39 | 0.100 | 0.027 |
Dried Apricot | 10.00 | 0.51 | 0.195 | 0.017 |
Garlic | 17.00 | 0.50 | 0.000 | 0.089 |
Almond | 1.61 | 53.40 | 1.180 | 4.040 |
Pineapple | 1.00 | 0.12 | 0.000 | 0.009 |
Canned Pineapple | 0.10 | 0.10 | 0.000 | 0.100 |
Artichoke | 94.00 | 0.15 | 0.000 | 0.036 |
Asparagus | 14.00 | 0.22 | 0.000 | 0.048 |
Eggplant | 1.00 | 0.23 | 0.000 | 0.044 |
Avocado | 7.00 | 14.66 | 0.000 | 2.126 |
Baguette | 711.00 | 1.30 | 0.100 | 0.280 |
Banana | 1.00 | 0.33 | 0.100 | 0.112 |
Beetroot | 0.10 | 0.20 | 0.200 | 0.100 |
Cooked Egg White | 0.20 | 0.20 | 0.000 | 0.000 |
Cooked Broccoli | 41.00 | 0.41 | 55.500 | 0.079 |
Broccoli | 0.30 | 0.40 | 0.500 | 0.100 |
Peanut | 2.10 | 49.60 | 0.000 | 1.000 |
Raw Carrot | 69.00 | 0.24 | 0.000 | 0.037 |
Peeled, Cooked Carrot (boiled) | 0.10 | 0.10 | 0.100 | 0.100 |
ine Celery | 80.00 | 0.17 | 0.430 | 0.042 |
Cooked Celery Stalk | 91.00 | 0.16 | 0.000 | 0.040 |
Name of Foods | Glycemic Load (Min) | Glycemic Load (Mean) | Glycemic Load (Max) |
---|---|---|---|
Apricot | 5.13 | 5.13 | 5.13 |
Dried Apricot | 15.9 | 18.55 | 21.2 |
Garlic | 3.225 | 3.225 | 3.225 |
Almond | 0.15 | 0.15 | 0.15 |
Pineapple | 3.57 | 3.753 | 3.936 |
Canned Pineapple | 0 | 0.313 | 0.626 |
Artichoke | 0.735 | 0.735 | 0.735 |
Asparagus | 0.48 | 0.48 | 0.48 |
Eggplant | 0.945 | 0.945 | 0.945 |
Avocado | 0.626 | 0.626 | 0.626 |
Baguette | 39.62 | 39.62 | 39.62 |
Banana | 9.22 | 10.76 | 12.3 |
Beetroot | 1.08 | 2.088 | 3.096 |
Cooked Egg White | 0 | 0 | 0 |
Cooked Broccoli | 0.165 | 0.165 | 0.165 |
Broccoli | 0.42 | 0.42 | 0.42 |
Peanut | 2.07 | 2.07 | 2.07 |
Raw Carrot | 0.48 | 0.48 | 0.48 |
Peeled. Cooked Carrot (boiled) | 3.102 | 4.356 | 5.61 |
Celery | 0.18 | 0.18 | 0.18 |
Cooked Celery Stalk | 0.24 | 0.24 | 0.24 |
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; Citeseer: Princeton, NJ, USA, 2023; Available online: https://diabetesatlas.org/ (accessed on 11 January 2024).
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Sun, J.; Feng, B.; Xu, W.-B. Particle Swarm Optimization with Particles Having Quantum Behavior. In Proceedings of the Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar]
- Sun, J.; Xu, W.B.; Feng, B. A global search strategy of quantum behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; pp. 111–116. [Google Scholar]
- Bhatia, A.S.; Saggi, M.K.; Zheng, S.; Nayak, S.R. QPSO-CD: Quantum-behaved Particle Swarm Optimization Algorithm with Cauchy Distribution. Quantum Inf. Process. 2020, 19, 345. [Google Scholar] [CrossRef]
- Dos Santos Coelho, L. Gaussian quantum-behaved particle swarm optimization approaches for constrained enginee ring design problems. Expert Syst. Appl. 2010, 37, 1676–1683. [Google Scholar] [CrossRef]
- Aroniadi, C.; Beligiannis, G.N. Solving the Fuzzy Transportation Problem by a Novel Particle Swarm Optimization Approach. Appl. Sci. 2024, 14, 5885. [Google Scholar] [CrossRef]
- Aroniadi, C.; Beligiannis, G.N. Applying Particle Swarm Optimization Variations to Solve the Transportation Problem Effectively. Algorithms 2023, 16, 372. [Google Scholar] [CrossRef]
- Kourepinis, V.; Iliopoulou, C.; Tassopoulos, I.X.; Aroniadi, C.; Beligiannis, G.N. An Improved Particle Swarm Optimization Algorithm for the Urban Transit Routing Problem. Electronics 2023, 12, 3358. [Google Scholar] [CrossRef]
- Tassopoulos, I.X.; Iliopoulou, C.A.; Katsaragakis, I.V.; Beligiannis, G.N. An Effective Local Particle Swarm Optimization-Based Algorithm for Solving the School Timetabling Problem. Algorithms 2023, 16, 291. [Google Scholar] [CrossRef]
- Adhikari, M.; Srirama, S.N. Multi-objective accelerated particle swarm optimization with a container-based scheduling for internet-of-things in cloud environment. J. Netw. Comput. Appl. 2019, 137, 35–61. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K.; Singhm, R. A novel hybrid model based on particle swarm optimisation and extreme learning machine for short-term temperature prediction using ambient sensors. Sustain. Cities Soc. 2019, 49, 101601. [Google Scholar] [CrossRef]
- He, F.; Chen, C.; Li, F.; Qi, Y.; Lin, X.; Liang, P.; Ren, M.; Yan, L. An optimal glycemic load range is better for reducing obesity and diabetes risk among middle-aged and elderly adults. Nutr. Metab. 2021, 18, 31. [Google Scholar] [CrossRef]
- Bas, E. A robust optimization approach to diet problem with overall glycemic load as objective function. Appl. Math. Model. 2014, 38, 4926–4940. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Cheggour, M.; Chellak, S.; Baizri, H. Metaheuristics optimization algorithm to an optimal Moroccan diet. In Proceedings of the 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China, 23–25 July 2021; pp. 364–368. [Google Scholar]
- Shi, Y.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 81, pp. 84–88. [Google Scholar]
- Schweizer, W. Numerical Quantum Dynamics; Springer Science & Business Media: Hingham, MA, USA, 2001. [Google Scholar]
- Liu, J.; Xu, W.; Sun, J. Quantum-behaved particle swarm optimization with mutation operator. In Proceedings of the 17th International Conference on Tools with Artificial Intelligence, Hong Kong, China, 14–16 November 2005. [Google Scholar]
- Clerc, M.; Kennedy, J.F. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Sun, J.; Fang, , W.; Wu, X.J.; Palade, V.; Xu, W.B. Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection. Evol. Comput. 2012, 59, 3686–3694. [Google Scholar] [CrossRef] [PubMed]
- Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 2008, 205, 751–759. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, K.H.; Kim, H.; Han, D.I. Thermal-Economic Optimization of Plate–Fin Heat Exchanger Using Improved Gaussian Quantum-Behaved Particle Swarm Algorithm. Mathematics 2022, 10, 2527. [Google Scholar] [CrossRef]
- Wei, Z.; Ye, S. Quantum-Behaved Particle Swarm Optimization Algorithm with Adaptive Mutation Based on q-Gaussian Distribution. Chin. J. Electron. 2012, 21, 449–452. [Google Scholar]
- Available online: https://mail.glycemicindex.com/faqsList.php (accessed on 3 October 2024).
- El Moutaouakil, K.; Saliha, C.; Hicham, B.; Mouna, C. Intelligent Local Search Optimization Methods to Optimal Morocco Regime. In Swarm Intelligence-Recent Advances and Current Applications; IntechOpen: London, UK, 2023. [Google Scholar]
- Abdellatif, E.O.; Karim, E.M.; Hicham, B.; Saliha, C. Intelligent local search for an optimal control of diabetic population dynamics. Math. Models Comput. Simul. 2022, 14, 1051–1071. [Google Scholar] [CrossRef]
- Ahourag, A.; Chellak, S.; Cheggour, M.; Baizri, H.; Bahri, A. Quadratic Programming and Triangular Numbers Ranking to an Optimal Moroccan Diet with Minimal Glycemic Load. Stat. Optim. Inf. Comput. 2023, 11, 85–94. [Google Scholar]
- El Moutaouakil, K.; Ahourag, A.; Chakir, S.; Kabbaj, Z.; Chellack, S.; Cheggour, M.; Baizri, H. Hybrid firefly genetic algorithm and integral fuzzy quadratic programming to an optimal Moroccan diet. Math. Model. Comput. 2023, 10, 338–350. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Yahyaouy, A.; Chellak, S.; Baizri, H. An optimized gradient dynamic-neuro-weighted-fuzzy clustering method: Application in the nutrition field. Int. J. Fuzzy Syst. 2022, 24, 3731–3744. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Touhafi, A. A new recurrent neural network fuzzy mean square clustering method. In Proceedings of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 November 2020; pp. 1–5. [Google Scholar]
- El Moutaouakil, K.; Palade, V.; Safouan, S.; Charroud, A. FP-Conv-CM: Fuzzy Probabilistic Convolution C-Means. Mathematics 2023, 11, 1931. [Google Scholar] [CrossRef]
- Ahourag, A.; El Moutaouakil, K.; Chellak, S.; Baizri, H.; Cheggour, M. Multi-criteria optimization for optimal nutrition of Moroccan diabetics:* Note: Sub-titles are not captured in Xplore and should not be used. In Proceedings of the 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 18–20 May 2022; pp. 1–6. [Google Scholar]
- Ahourag, A.; El Moutaouakil, K.; Cheggour, M.; Chellak, S.; Baizri, H. Multiobjective Optimization to Optimal Moroccan Diet Using Genetic Algorithm. Int. J. Eng. Model. 2023, 36, 67–69. [Google Scholar]
- El Moutaouakil, K.; El Ouissari, A.; Palade, V.; Charroud, A.; Olaru, A.; Baïzri, H.; Cheggour, M. Multi-objective optimization for controlling the dynamics of the diabetic population. Mathematics 2023, 11, 2957. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; El Ouissari, A.; Hicham, B.; Saliha, C.; Cheggour, M. Multi-objectives optimization and convolution fuzzy C-means: Control of diabetic population dynamic. RAIRO-Oper. Res. 2022, 56, 3245–3256. [Google Scholar] [CrossRef]
- Ahourag, A.; El Moutaouakil, K.; Elkari, B.; Hammouni, A.; Ourabah, L.; Chellak, S. A Multiobjective Diet Planning Model for Diabetic Patients in the Moroccan Health Context Using Particle Swarm Intelligence. Stat. Optim. Inf. Comput. 2024, 12, 605–616. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Ahourag, A.; Chellak, S.; Baïzri, H.; Cheggour, M. Fuzzy Deep Daily Nutrients Requirements Representation. Rev. D’intell. Artif. 2022, 36, 263. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Baizri, H.; Chellak, S. Optimal fuzzy deep daily nutrients requirements representation: Application to optimal Morocco diet problem. Math. Model. Comput. 2022, 9, 607–615. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans; U.S. Department of Health and Human Services and U.S. Department of Agriculture: Washington, DC, USA, 2010.
- Atkinson, F.S.; Foster-Powell, K.; BranMiller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
- Bounabi, M.; Moutaouakil, K.E.; Satori, K. The Optimal Inference Rules Selection for Unstructured Data Multi-Classification. Stat. Optim. Inf. Comput. 2022, 10, 225–235. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Ahourag, A.; Belhabib, F.; Hammoumi, A.; Patriciu, A.-M.; Chellak, S.; Baizri, H. Fuzzy Modeling to Personalized Nutritional Menu. Curr. Nutr. Food Sci. 2025, 21, e210324228226. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; Roudani, M.; Ahourag, A.; Aayah, H.; Mouna, C.; Chellak, S.; Baizri, H. A Deep Fuzzy Neural Network System to Group Moroccan Foods: Towards a Personalized Menu for Type 2 Diabetes Patient. Nutr. Food Sci. Int. J. 2024, 13, 555860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahourag, A.; Bouhanch, Z.; El Moutaouakil, K.; Touhafi, A. Improved Quantum Particle Swarm Optimization of Optimal Diet for Diabetic Patients. Eng 2024, 5, 2544-2559. https://doi.org/10.3390/eng5040133
Ahourag A, Bouhanch Z, El Moutaouakil K, Touhafi A. Improved Quantum Particle Swarm Optimization of Optimal Diet for Diabetic Patients. Eng. 2024; 5(4):2544-2559. https://doi.org/10.3390/eng5040133
Chicago/Turabian StyleAhourag, Abdellah, Zakaria Bouhanch, Karim El Moutaouakil, and Abdellah Touhafi. 2024. "Improved Quantum Particle Swarm Optimization of Optimal Diet for Diabetic Patients" Eng 5, no. 4: 2544-2559. https://doi.org/10.3390/eng5040133
APA StyleAhourag, A., Bouhanch, Z., El Moutaouakil, K., & Touhafi, A. (2024). Improved Quantum Particle Swarm Optimization of Optimal Diet for Diabetic Patients. Eng, 5(4), 2544-2559. https://doi.org/10.3390/eng5040133