The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique
Abstract
:1. Introduction
2. Methods
2.1. Plant Material
2.2. Culturing and Treatment of Cells
2.3. Laser Trap Design
2.4. Experimental Procedure
3. Results
3.1. The Physical Properties of the Free Cell
3.2. The Physical Properties of the A549 Cell with Laser Trap
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2010 Incidence and Mortality Web-Based Report; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute: Atlanta, GA, USA, 2013.
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 10 February 2021).
- Singh, S.D.; Henley, S.J.; Ryerson, A.B. Surveillance for cancer incidence and mortality—United States, 2013. MMWR Surveill. Summ. 2017, 66, 1. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Maingon, P.; Govaerts, A.-S.; Rivera, S.; Vens, C.; Shash, E.; Grégoire, V. New challenge of developing combined radio-drug therapy. Chin. Clin. Oncol. 2014, 3, 18. [Google Scholar] [CrossRef]
- Nozomi, A.; Sato, H.; Hayakawa, Y. Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice. Oncol. Lett. 2018, 15, 2330–2334. [Google Scholar]
- Kang, J.H.; Park, Y.H.; Choi, S.W.; Yang, E.K.; Lee, W.J. Resveratrol derivatives potently induce apoptosis in human promyelocytic leukemia cells. Exp. Mol. Med. 2003, 35, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Solomon, R.; Devito, D.; Brown, C.; Coopper, H.; Crogman, H.; Erenso, D.; Pellizzaro, A.; Revalee, J.; Farone, A.; Farone, M.; et al. Human Lung Carcinoma Cells Treatment by Herbal Medicines Measured by the Response to Compressional Force Induced by a Laser Trap. Opt. Soc. Am. 2014, 26, BM3A-6. [Google Scholar]
- Endris, M.; Chen, L.; Gao, Y.; Erenso, D. Chemo-treated 4T1 breast cancer cells radiation response measured by single and multiple cell ionization using infrared laser trap. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Smith, G.L.; Smith, B.D. Radiation treatment in older patients: A framework for clinical decision making. J. Clin. Oncol. 2014, 32, 2669–2678. [Google Scholar] [CrossRef]
- Ashkin, A. Applications of laser radiation pressure. Science 1980, 210, 1081–1088. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771. [Google Scholar] [CrossRef]
- Brandao, M.M.; Fontes, A.; Barjas-Castro, M.L.; Barbosa, L.C.; Costa, F.F.; Cesar, C.L.; Saad, S.T.O. Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease. Eur. J. Haematol. 2004, 70, 207–211. [Google Scholar] [CrossRef]
- Erenso, D.; Shulman, A.; Curtis, J.; Elrod, S. Formation of synthetic structures with micron size silica beads using optical tweezer. J. Mod. Opt. 2007, 54, 1529–1536. [Google Scholar] [CrossRef]
- Bordeleau, F.; Bessard, J.; Sheng, Y.; Marceau, N. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers. J. Biomed. Opt. 2011, 16, 095005–095008. [Google Scholar] [CrossRef] [PubMed]
- Pellizzaro, A.; Welker, G.; Scott, D.; Solomon, R.; Cooper, J.; Farone, A.; Farone, M.; Mushi, R.S.; del Pilar Aguinaga, M.; Erenso, D. Direct laser trapping for measuring the behavior of transfused erythrocytes in a sickle cell anemia patient. Biomed. Opt. Express 2012, 3, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Endris, M.; Cooper, J.; Devito, D.; Mushi, R.; del Pilar Aguinaga, M.; Erenso, D.; Crogman, H. Elastic property of sickle cell anemia and sickle cell trait red blood cells. J. Biomed. Opt. 2021, 26, 096502. [Google Scholar]
- Kelley, M.; Gao, Y.; Erenso, D. Single cell ionization by a laser trap: A preliminary study in measuring radiation dose and charge in BT20 breast carcinoma cells. Biomed. Opt. Express 2016, 7, 3438–3448. [Google Scholar] [CrossRef]
- Huo, X.; Pan, S.; Sun, W.X. Principles and development of laser trapping technique. Optical Technique 2006, 32, 311–315. [Google Scholar]
- Kelley, M.; Cooper, J.; Devito, D.; del Pilar Aguinaga, M.; Erenso, D.B. Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation. J. Biomed. Opt. 2018, 23, 055005–055010. [Google Scholar] [CrossRef]
- Armania, N.; Yazan, L.S.; Ismail, I.S.; Foo, J.B.; Tor, Y.S.; Ishak, N.; Ismail, N.; Ismail, M. Dillenia suffruticosa extract inhibits proliferation of human breast cancer cell lines (MCF-7 and MDA-MB-231) via induction of G2/M arrest and apoptosis. Molecules 2013, 18, 13320–13339. [Google Scholar] [CrossRef]
- Kim, D.; Radin, D.; Leonardi, D. Probing the molecular mechanisms governing the oncolytic activity of Paeonia suffruticosa on triple-negative breast cancer cells in vitro. Anticancer. Res. 2017, 37, 4813–4819. [Google Scholar]
- Pasquerilla, M.; Kelley, M.; Mushi, R.; Aguinaga, M.; Erenso, D. Laser trapping ionization of single human red blood cell. Biomed. Phys. Eng. Express 2018, 4, 045020. [Google Scholar] [CrossRef]
- He, C.N.; Bi, W.; Shen, J.; Peng, Y.; Xiao, P.G. Determination of ten stilbenes and their antioxidant activity of peony seed coat, seed kernel and seed coat extracts. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 2016, 41, 1081–1086. [Google Scholar]
- Xiao, Y.; Deng, R.; Liu, P.; Hu, J.; Niu, W.; Gao, J. Secondary metabolite mapping identifies peony episperm inhibitors of human hepatoma cells. Nat. Prod. Commun. 2019, 14, 1934578X19860313. [Google Scholar] [CrossRef]
- Wang, X.-F.; Yao, C.-S. Naturally active oligostilbenes. J. Asian Nat. Prod. Res. 2016, 18, 376–407. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Fu, Y.-H.; Zhou, Q.; Bai, M.; Chen, G.-Y.; Han, C.-R.; Song, X.-P. Biologically active oligostilbenes from the stems of Vatica mangachapoi and chemotaxonomic significance. Nat. Prod. Res. 2019, 33, 2300–2307. [Google Scholar] [CrossRef] [PubMed]
- Lukas, J.; Lukas, C.; Bartek, J. Mammalian cell cycle checkpoints: Signalling pathways and their organization in space and time. DNA Repair 2004, 3, 997–1007. [Google Scholar] [CrossRef]
- Foster, I. Cancer: A cell cycle defect. Radiography 2008, 14, 144–149. [Google Scholar] [CrossRef]
- Murray, A.W. Recycling the cell cycle: Cyclins revisited. Cell 2004, 116, 221–234. [Google Scholar] [CrossRef]
- He, C.-N.; Peng, Y.; Xu, L.-J.; Liu, Z.-A.; Gu, J.; Zhong, A.-G.; Xiao, P.-G. Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chem. Pharm. Bull. 2010, 58, 843–847. [Google Scholar] [CrossRef]
- Almosnid, N.M.; Gao, Y.; He, C.; Park, H.S.; Altman, E. In vitro antitumor effects of two novel oligostilbenes, cis-and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. Int. J. Oncol. 2016, 48, 646–656. [Google Scholar] [CrossRef]
- de Sousa, J.S.; Freire, R.; Sousa, F.; Radmacher, M.; Silva, A.; Ramos, M.; Monteiro-Moreira, A.C.O.; Mesquita, F.P.; Moraes, M.E.A.; Montenegro, R.C.; et al. Double power-law viscoelastic relaxation of living cells encodes motility trends. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Hillman, T.R.; Higgins, J.M.; Diez-Silva, M.; Peng, Z.; Dao, M.; Dasari, R.R.; Suresh, S.; Park, Y. Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater. 2012, 8, 4130–4138. [Google Scholar] [CrossRef]
- Maciaszek, J.L.; Lykotrafitis, G. Sickle cell trait human erythrocytes are significantly stiffer than normal. J. Biomech. 2011, 44, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Jiangzhou, W.; Barnett, J.; Pollard, M.; Kad, M.N. Integrating optical tweezers, DNA tightropes, and single-Molecule fluorescence imaging: Pitfalls and traps. Methods Enzymol. 2017, 582, 171–192. [Google Scholar]
Free Cell | ||||||
---|---|---|---|---|---|---|
Treatment Periods (hours) | # of Cells | Mean Area (µm2) | Standard Deviation (µm2) | Min. Area (µm2) | Media Area (µm2) | Max. Area (µm2) |
0 | 50 | 186.1 | 47.2 | 92.2 | 186.4 | 311.5 |
3 | 50 | 304.8 | 79.6 | 141.9 | 294.5 | 482.6 |
6 | 50 | 333.9 | 88.2 | 168.3 | 325.3 | 627.4 |
Trapped Cell | ||||||
0 | 50 | 134.2 | 36.3 | 68.3 | 124.0 | 133.0 |
3 | 50 | 208.8 | 66.7 | 76.9 | 294.5 | 339.8 |
6 | 50 | 242.2 | 104.6 | 83.8 | 223.2 | 644.6 |
Trapped Cell Mean Area (µm2) | |||
---|---|---|---|
Untreated | Treated | ||
Power (mW) | 0 | 3 h | 6 h |
300 | 183.3 | 253.5 | 280.9 |
900 | 207.9 | 319.1 | 347.2 |
1500 | 215.8 | 339.3 | 357.5 |
2100 | 234.7 | 340.9 | 344.5 |
2700 | 261.9 | 398.3 | 422.6 |
Free Cell Mean Area (µm2) | |||
300 | 186.1 | 304.8 | 333.9 |
900 | 225.9 | 357.1 | 364.4 |
1500 | 245.1 | 359.7 | 374.4 |
2100 | 281.9 | 361.7 | 387.7 |
2700 | 297.8 | 399.1 | 440.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goangul, M.S.; Solomon, R.M.; Devito, D.L.; Brown, C.A.; Coopper, J.; Erenso, D.B.; Gao, Y.; Pellizzaro, A.; Revalee, J.M.; Crogman, H.T. The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique. Biophysica 2023, 3, 109-120. https://doi.org/10.3390/biophysica3010008
Goangul MS, Solomon RM, Devito DL, Brown CA, Coopper J, Erenso DB, Gao Y, Pellizzaro A, Revalee JM, Crogman HT. The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique. Biophysica. 2023; 3(1):109-120. https://doi.org/10.3390/biophysica3010008
Chicago/Turabian StyleGoangul, Mulugeta S., Rance M. Solomon, Daniel L. Devito, Charles A. Brown, James Coopper, Daniel B. Erenso, Ying Gao, Aline Pellizzaro, Jennifer M. Revalee, and Horace T. Crogman. 2023. "The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique" Biophysica 3, no. 1: 109-120. https://doi.org/10.3390/biophysica3010008
APA StyleGoangul, M. S., Solomon, R. M., Devito, D. L., Brown, C. A., Coopper, J., Erenso, D. B., Gao, Y., Pellizzaro, A., Revalee, J. M., & Crogman, H. T. (2023). The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique. Biophysica, 3(1), 109-120. https://doi.org/10.3390/biophysica3010008