Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells
Abstract
:1. Introduction
2. Materials and Method
2.1. Reagents
2.2. FRET Probes for Determining the Catalytic Activity of Enzymes
2.2.1. FRET Probes
2.2.2. Fluorometric Determination of Enzyme Activity
2.3. HEK293T Cells Cultivation
2.4. Fluorescence Microscopy and Confocal Laser Scanning Microscopy (CLSM) of Cells
3. Results and Discussion
3.1. FRET Probes Spectral Properties
3.2. Monitoring the Enzyme Catalytic Activity in Buffer Solution vs. Reversed Micellar Systems Using FRET Probes
3.2.1. Theoretical Comparison of Expected FRET Effects in A Buffer and in A System of Reverse Micelles
3.2.2. Objects of Research
3.2.3. FRET Enhancing due to α-Chymotrypsin Activity in AOT-Isooctane Reverse Micelles
3.2.4. Acid Phosphatase Activity in Buffer Solution and in AOT-Octane Reverse Micelles
3.2.5. Catalytic Activity in a Two-Enzyme System: Alkaline Phosphatase and Asparaginase
3.3. Visualization of Enzyme Activity in Living HEK293T Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Krasteva, G.; Pfeil, U.; Drab, M.; Kummer, W.; König, P. Caveolin-1 and -2 in Airway Epithelium: Expression and in Situ Association as Detected by FRET-CLSM. Respir. Res. 2006, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, H.; Han, M.; Sun, B.; Li, J. Multilayer Microcapsules for FRET Analysis and Two-Photon-Activated Photodynamic Therapy. Angew. Chemie Int. Ed. 2016, 55, 13538–13543. [Google Scholar] [CrossRef] [PubMed]
- König, P.; Krasteva, G.; Tag, C.; König, I.R.; Arens, C.; Kummer, W. FRET-CLSM and Double-Labeling Indirect Immunofluorescence to Detect Close Association of Proteins in Tissue Sections. Lab. Investig. 2006, 86, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; He, B.; Tao, J.; He, Y.; Deng, H.; Wang, X.; Zheng, Y. Application of Förster Resonance Energy Transfer (FRET) Technique to Elucidate Intracellular and In Vivo Biofate of Nanomedicines. Adv. Drug Deliv. Rev. 2019, 143, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Fuenzalida, J.P.; Weikert, T.; Hoffmann, S.; Vila-Sanjurjo, C.; Moerschbacher, B.M.; Goycoolea, F.M.; Kolkenbrock, S. Affinity Protein-Based FRET Tools for Cellular Tracking of Chitosan Nanoparticles and Determination of the Polymer Degree of Acetylation. Biomacromolecules 2014, 15, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Kaminski Schierle, G.S.; Bertoncini, C.W.; Chan, F.T.S.; van der Goot, A.T.; Schwedler, S.; Skepper, J.; Schlachter, S.; van Ham, T.; Esposito, A.; Kumita, J.R.; et al. A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem 2011, 12, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Jares-Erijman, E.A.; Jovin, T.M. FRET Imaging. Nat. Biotechnol. 2003, 21, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Song, H.; Zhang, Y.; Liu, J.; Cheng, Z.; Liang, X.J.; Wang, W.; Kong, D.; Liu, J. FRET-Enabled Monitoring of the Thermosensitive Nanoscale Assembly of Polymeric Micelles into Macroscale Hydrogel and Sequential Cognate Micelles Release. Biomaterials 2017, 145, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Sachs, F. Orientation-Based FRET Sensor for Real-Time Imaging of Cellular Forces. J. Cell Sci. 2012, 125, 743–750. [Google Scholar] [CrossRef]
- Kikuchi, K.; Takakusa, H.; Nagano, T. Recent Advances in the Design of Small Molecule-Based FRET Sensors for Cell Biology. TrAC—Trends Anal. Chem. 2004, 23, 407–415. [Google Scholar] [CrossRef]
- Lindenburg, L.; Merkx, M. Engineering Genetically Encoded FRET Sensors. Sensors 2014, 14, 11691–11713. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.M.; Rhee, W.J.; Sotto, D.; Dublin, S.N.; Bao, G. Quantum Dot-Fluorescent Protein Fret Probes for Sensing Intracellular PH. ACS Nano 2012, 6, 2917–2924. [Google Scholar] [CrossRef] [PubMed]
- Panniello, A.; Trapani, M.; Cordaro, M.; Dibenedetto, C.N.; Tommasi, R.; Ingrosso, C.; Fanizza, E.; Grisorio, R.; Collini, E.; Agostiano, A.; et al. High-Efficiency FRET Processes in BODIPY-Functionalized Quantum Dot Architectures. Chem.—A Eur. J. 2021, 27, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- De Los Santos, C.; Chang, C.; Mycek, M.; Cardullo, R.A. FRAP, FLIM, and FRET: Detection and Analysis of Cellular Dynamics on a Molecular Scale Using Fluorescence Microscopy. Mol. Reprod. Dev. 2015, 82, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, P.P.; Eliceiri, K.W.; Keely, P.J. Multiphoton Microscopy and Fluorescence Lifetime Imaging Microscopy (FLIM) to Monitor Metastasis and the Tumor Microenvironment. Clin. Exp. Metastasis 2009, 26, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lee, Y.; Best-Popescu, C.; Gao, L. High-Speed Compressed-Sensing Fluorescence Lifetime Imaging Microscopy of Live Cells. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Blacker, T.S.; Mann, Z.F.; Gale, J.E.; Ziegler, M.; Bain, A.J.; Szabadkai, G.; Duchen, M.R. Separating NADH and NADPH Fluorescence in Live Cells and Tissues Using FLIM. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Eichorst, J.P.; Clegg, R.M.; Wang, Y. Red-Shifted Fluorescent Proteins Monitor Enzymatic Activity in Live HT-1080 Cells with Fluorescence Lifetime Imaging Microscopy (FLIM). J. Microsc. 2012, 248, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Jenei, A.; Nagy, P.; Vereb, G.; Szöllősi, J. Understanding FRET as a Research Tool for Cellular Studies. Int. J. Mol. Sci. 2015, 16, 6718–6756. [Google Scholar] [CrossRef]
- Lundin, M.; Blomberg, E.; Tilton, R.D. Polymer Dynamics in Layer-by-Layer Assemblies of Chitosan and Heparin. Langmuir 2010, 26, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.; Sterpone, F.; Bandyopadhyay, S.; Marchi, M. Molecular Modeling and Simulations of AOT-Water Reverse Micelles in Isooctane: Structural and Dynamic Properties. J. Phys. Chem. B 2004, 108, 19458–19466. [Google Scholar] [CrossRef]
- Abel, S.; Waks, M.; Marchi, M. Molecular Dynamics Simulations of Cytochrome c Unfolding in AOT Reverse Micelles: The First Steps. Eur. Phys. J. E 2010, 32, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, W.D.; Ogilvie, M.E.; Flynn, P.F. Use of Reverse Micelles in Membrane Protein Structural Biology. J. Biomol. NMR 2008, 40, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Kudryashova, E.V.; Bronza, V.L.; Vinogradov, A.A.; Kamyshny, A.; Magdassi, S.; Levashov, A.V. Regulation of Acid Phosphatase in Reverse Micellar System by Lipids Additives: Structural Aspects. J. Colloid Interface Sci. 2011, 353, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Creagh, A.L.; Prausnitz, J.M.; Blanch, H.W. Structural and Catalytic Properties of Enzymes in Reverse Micelles. Enzyme Microb. Technol. 1993, 15, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhao, J.; Jiang, R. Nile Red Probing for the Micelle-to-Vesicle Transition of AOT in Aqueous Solution. Chem. Phys. Lett. 2008, 464, 77–81. [Google Scholar] [CrossRef]
- Luchter-Wasylewska, E.; Iciek, M. Positive Cooperativity in Substrate Binding of Human Prostatic Acid Phosphatase Entrapped in AOT-Isooctane-Water Reverse Micelles. J. Colloid Interface Sci. 2004, 273, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Sahu, K.; Ghosh, S.; Mondal, S.K.; Ghosh, B.C.; Sen, P.; Roy, D.; Bhattacharyya, K. Ultrafast Fluorescence Resonance Energy Transfer in a Micelle. J. Chem. Phys. 2006, 125, 1–9. [Google Scholar] [CrossRef]
- Ilhami, F.B.; Bayle, E.A.; Cheng, C.C. Complementary Nucleobase Interactions Drive Co-Assembly of Drugs and Nanocarriers for Selective Cancer Chemotherapy. Pharmaceutics 2021, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ngan, V.T.T.; Chiou, P.Y.; Ilhami, F.B.; Bayle, E.A.; Shieh, Y.T.; Chuang, W.T.; Chen, J.K.; Lai, J.Y.; Cheng, C.C. A CO2-Responsive Imidazole-Functionalized Fluorescent Material Mediates Cancer Chemotherapy. Pharmaceutics 2023, 15, 354. [Google Scholar] [CrossRef]
- Zehentbauer, F.M.; Moretto, C.; Stephen, R.; Thevar, T.; Gilchrist, J.R.; Pokrajac, D.; Richard, K.L.; Kiefer, J. Fluorescence Spectroscopy of Rhodamine 6G: Concentration and Solvent Effects. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2014, 121, 147–151. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Malashkeevich, S.M.; Belogurova, N.G.; Kudryashova, E.V. Thermoreversible Gels Based on Chitosan Copolymers as “Intelligent” Drug Delivery System with Prolonged Action for Intramuscular Injection. Pharmaceutics 2023, 15, 1478. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Savchenko, I.V.; Kudryashova, E. V Specific FRET Probes Sensitive to Chitosan-Based Polymeric Micelles Formation, Drug-Loading, and Fine Structural Features. Polymers 2024, 16, 739. [Google Scholar] [CrossRef] [PubMed]
- Kudryashova, E.V.; Leferink, N.G.H.; Slot, I.G.M.; Van Berkel, W.J.H. Galactonolactone Oxidoreductase from Trypanosoma Cruzi Employs a FAD Cofactor for the Synthesis of Vitamin C. Biochim. Biophys. Acta—Proteins Proteomics 2011, 1814, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Ghosh, P.K.; De, T.K.; Sahoo, S.K. Process for the Preparation of Highly Monodispersed Polymeric Hydrophilic Nanoparticles. U.S. Patent 5874111A, 7 January 1997. [Google Scholar]
- Jia, H.; Zhu, G.; Wang, P. Catalytic Behaviors of Enzymes Attached to Nanoparticles: The Effect of Particle Mobility. Biotechnol. Bioeng. 2003, 84, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Blocher, M.; Walde, P.; Dunn, I.J. Modeling of Enzymatic Reactions in Vesicles: The Case of Chymotrypsin. Biotechnol. Bioeng. 1999, 62, 36–43. [Google Scholar] [CrossRef]
- Kudryashova, E.V.; Artemova, T.M.; Vinogradov, A.A.; Gladilin, A.K.; Mozhaev, V.V.; Levashov, A.V. Stabilization and Activation of α-Chymotrypsin in Water-Organic Solvent Systems by Complex Formation with Oligoamines. Protein Eng. 2003, 16, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Batool, T.; Makky, E.A.; Jalal, M.; Yusoff, M.M. A Comprehensive Review on L-Asparaginase and Its Applications. Appl. Biochem. Biotechnol. 2016, 178, 900–923. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.H.G.; da Silva Fiúza, T.; de Morais, S.B.; Trevizani, R. Circumventing the Side Effects of L-Asparaginase. Biomed. Pharmacother. 2021, 139, 111616. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Zalewska-Szewczyk, B. Hypersensitivity Reactions to Asparaginase Therapy in Acute Lymphoblastic Leukemia: Immunology and Clinical Consequences. Futur. Oncol. 2022, 18, 1285–1299. [Google Scholar] [CrossRef]
- Egler, R.A.; Ahuja, S.P.; Matloub, Y. L-Asparaginase in the Treatment of Patients with Acute Lymphoblastic Leukemia. J. Pharmacol. Pharmacother. 2016, 7, 62–71. [Google Scholar] [CrossRef]
- Krasotkina, J.; Borisova, A.A.; Gervaziev, Y.V.; Sokolov, N.N. One-Step Purification and Kinetic Properties of the Recombinant L-Asparaginase from Erwinia Carotovora. Biotech. Appl. Biochem. 2004, 39, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Douer, D.; Gökbuget, N.; Stock, W.; Boissel, N. Optimizing Use of L-Asparaginase–Based Treatment of Adults with Acute Lymphoblastic Leukemia. Blood Rev. 2022, 53. [Google Scholar] [CrossRef] [PubMed]
- Mohideen, A.K.S. Molecular Docking Study of L-Asparaginase i from Vibrio Campbellii in the Treatment of Acute Lymphoblastic Leukemia (ALL). EuroBiotech J. 2020, 4, 8–16. [Google Scholar] [CrossRef]
Enzyme/Emission Wavelength | Initial Rate, mM−1 × min−1 (the Observed Values of Tangents of Linear Sections of Kinetic Curves) | Specific Activity, U/mg | Fluorescence Quantum Yield φ | ||
---|---|---|---|---|---|
450 nm (AMC > MUmb) | 465 nm (MUmb > AMC) | 550 nm (R6G) | |||
L-Asparaginase | 245 ± 5 | 215 ± 5 | 4000 ± 150 | 20 ± 3 | AMC: 0.12 R6G: 0.75 |
Alkaline phosphatase | 285 ± 20 | 240 ± 25 | 4200 ± 250 | 2.1 ± 0.6 | MUmb:0.09 R6G: 0.74 |
Asparaginase + alkaline phosphatase | 410 ± 30 | 525 ± 35 | 8000 ± 500 | 17 ± 4; 2.5 ± 0.8 | AMC: 0.13 MUmb: 0.08 R6G: 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlotnikov, I.D.; Ezhov, A.A.; Kudryashova, E.V. Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells. Biophysica 2024, 4, 340-356. https://doi.org/10.3390/biophysica4030024
Zlotnikov ID, Ezhov AA, Kudryashova EV. Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells. Biophysica. 2024; 4(3):340-356. https://doi.org/10.3390/biophysica4030024
Chicago/Turabian StyleZlotnikov, Igor D., Alexander A. Ezhov, and Elena V. Kudryashova. 2024. "Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells" Biophysica 4, no. 3: 340-356. https://doi.org/10.3390/biophysica4030024
APA StyleZlotnikov, I. D., Ezhov, A. A., & Kudryashova, E. V. (2024). Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells. Biophysica, 4(3), 340-356. https://doi.org/10.3390/biophysica4030024