Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Ball, P. Water is an active matrix of life for cell and molecular biology. Proc. Natl. Acad. Sci. USA 2017, 114, 13327–13335. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.; Ferreira, L.A.; Belgovskiy, A.I.; Madeira, P.P.; Teixeira, J.A.; Mann, E.K.; Mann, J.A., Jr.; Meyer, W.V.; Smart, A.E.; Chernyak, V.Y. Effects of different solutes on the physical chemical properties of aqueous solutions via rearrangement of hydrogen bonds in water. J. Mol. Liq. 2021, 335, 116288. [Google Scholar] [CrossRef]
- Madeira, P.P.; Titus, A.R.; Ferreira, L.A.; Belgovskiy, A.I.; Mann, E.K.; Mann, J.A., Jr.; Meyer, W.V.; Smart, A.E.; Uversky, V.N.; Zaslavsky, B.Y. Hydrogen bond arrangement is shown to differ in coexisting phases of aqueous two-phase systems. Biomolecules 2021, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Pavelec, J.; DiGuiseppi, D.; Zavlavsky, B.Y.; Uversky, V.N.; Schweitzer-Stenner, R. Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy. J. Mol. Liq. 2019, 275, 463–473. [Google Scholar] [CrossRef]
- Titus, A.; Herron, P.; Streletzky, K.; Madeira, P.P.; Uversky, V.N.; Zaslavsky, B. Effect of Trimethylamine-N-oxide on the Phase Separation of Aqueous Polyethylene Glycol-600-Dextran-75 Two-Phase Systems. Phys. Chem. Chem. Phys. 2024, 26, 10546–10556. [Google Scholar] [CrossRef] [PubMed]
- Titus, A.R.; Madeira, P.P.; Ferreira, L.A.; Chernyak, V.Y.; Uversky, V.N.; Zaslavsky, B.Y. Mechanism of phase separation in aqueous two-phase systems. Int. J. Mol. Sci. 2022, 23, 14366. [Google Scholar] [CrossRef] [PubMed]
- Titus, A.R.M.; Madeira, P.P.; Ferreira, L.A.; Belgovskiy, A.I.; Mann, E.K.; Mann, J.A., Jr.; Meyer, W.V.; Smart, A.E.; Uversky, V.N.; Zaslavsky, B.Y. Arrangement of hydrogen bonds in aqueous solutions of different globular proteins. Manuscr. Submitt. Publ. 2022, 23, 11381. [Google Scholar] [CrossRef]
- Buch, V. Molecular structure and OH-stretch spectra of liquid water surface. J. Phys. Chem. B 2005, 109, 17771–17774. [Google Scholar] [CrossRef]
- Buch, V.; Devlin, J. A new interpretation of the OH-stretch spectrum of ice. J. Chem. Phys. 1999, 110, 3437–3443. [Google Scholar] [CrossRef]
- Marechal, Y.; Witkowski, A. Infrared Spectra of H-Bonded Systems. J. Chem. Phys. 1968, 48, 3697–3705. [Google Scholar] [CrossRef]
- Bratos, S. Profiles of hydrogen stretching ir bands of molecules with hydrogen bonds: A stochastic theory. I. Weak and medium strength hydrogen bonds. J. Chem. Phys. 1975, 63, 3499–3509. [Google Scholar] [CrossRef]
- Fillaux, F. Theoretical model for calculations of infrared and Raman band profiles of strong hydrogen bonds in ordered media. Chem. Phys. 1983, 74, 395–404. [Google Scholar] [CrossRef]
- Iogansen, A. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν (XH) vibration in infrared spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1585–1612. [Google Scholar] [CrossRef]
- Burnham, C.; Reiter, G.; Mayers, J.; Abdul-Redah, T.; Reichert, H.; Dosch, H. On the origin of the redshift of the OH stretch in Ice Ih: Evidence from the momentum distribution of the protons and the infrared spectral density. Phys. Chem. Chem. Phys. 2006, 8, 3966–3977. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.L.; Kjaergaard, H.G. Influence of intramolecular hydrogen bond strength on OH-stretching overtones. J. Phys. Chem. A 2006, 110, 10245–10250. [Google Scholar] [CrossRef]
- Scharge, T.; Luckhaus, D.; Suhm, M.A. Observation and quantification of the hydrogen bond effect on O−H overtone intensities in an alcohol dimer. Chem. Phys. 2008, 346, 167–175. [Google Scholar] [CrossRef]
- Ojha, D.; Karhan, K.; Kühne, T.D. On the hydrogen bond strength and vibrational spectroscopy of liquid water. Sci. Rep. 2018, 8, 16888. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.-H.; Zhao, L.-J. ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg (ClO4)2 solutions. Phys. Chem. Chem. Phys. 2004, 6, 537–542. [Google Scholar] [CrossRef]
- Dong, J.-L.; Li, X.-H.; Zhao, L.-J.; Xiao, H.-S.; Wang, F.; Guo, X.; Zhang, Y.-H. Raman Observation of the Interactions between NH4+, SO42−, and H2O in Supersaturated (NH4)2SO4 Droplets. J. Phys. Chem. B 2007, 111, 12170–12176. [Google Scholar] [CrossRef]
- Kitadai, N.; Sawai, T.; Tonoue, R.; Nakashima, S.; Katsura, M.; Fukushi, K. Effects of ions on the OH stretching band of water as revealed by ATR-IR spectroscopy. J. Solut. Chem. 2014, 43, 1055–1077. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Z.; Chen, F.; Yang, H.; Guan, Y. Hydrogen bonded structure of water and aqueous solutions of sodium halides: A Raman spectroscopic study. J. Mol. Struct. 2004, 707, 83–88. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Z.; Guan, Y.; Yang, H.; Liu, B. Effects of metal ion on the water structure studied by the Raman OH stretching spectrum. J. Raman Spectrosc. Int. J. Orig. Work. All Asp. Raman Spectrosc. Incl. High. Order Process. Also Brillouin Rayleigh Scatt. 2009, 40, 1200–1204. [Google Scholar]
- Li, R.; Jiang, Z.; Shi, S.; Yang, H. Raman spectra and 17O NMR study effects of CaCl2 and MgCl2 on water structure. J. Mol. Struct. 2003, 645, 69–75. [Google Scholar] [CrossRef]
- Liu, J.-H.; Zhang, Y.-H.; Wang, L.-Y.; Wei, Z.-F. Drawing out the structural information of the first layer of hydrated ions: ATR-FTIR spectroscopic studies on aqueous NH4NO3, NaNO3, and Mg(NO3)2 solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Haramaki, T.; Nakashima, S.; Habert, B.; Martinez, I.; Kashiwabara, S. Structural change of water with solutes and temperature up to 100 C in aqueous solutions as revealed by attenuated total reflectance infrared spectroscopy. Appl. Spectrosc. 2003, 57, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q. Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 2012, 62, 110–114. [Google Scholar] [CrossRef]
- Wei, Z.-F.; Zhang, Y.-H.; Zhao, L.-J.; Liu, J.-H.; Li, X.-H. Observation of the first hydration layer of isolated cations and anions through the FTIR-ATR difference spectra. J. Phys. Chem. A 2005, 109, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-J.; Zhang, Y.-H.; Wei, Z.-F.; Cheng, H.; Li, X.-H. Magnesium sulfate aerosols studied by FTIR spectroscopy: Hygroscopic properties, supersaturated structures, and implications for seawater aerosols. J. Phys. Chem. A 2006, 110, 951–958. [Google Scholar] [CrossRef]
- Brini, E.; Fennell, C.J.; Fernandez-Serra, M.; Hribar-Lee, B.; Luksic, M.; Dill, K.A. How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 2017, 117, 12385–12414. [Google Scholar] [CrossRef]
- Freeman, K.G.; Adamczyk, J.; Streletzky, K.A. Effect of synthesis temperature on size, structure, and volume phase transition of polysaccharide microgels. Macromolecules 2020, 53, 9244–9253. [Google Scholar] [CrossRef]
- McDonough, R.; Cueto, R.; Phillies, G.D.; Russo, P.S.; Dorman, D.; Streletzky, K.A. Fluorescent labeling can alter polymer solution dynamics. Macromolecules 2015, 48, 7245–7255. [Google Scholar] [CrossRef]
- Russo, P.S.; Streletzky, K.A.; Gorman, A.; Huberty, W.; Zhang, X. Characterization of polymers by dynamic light scattering. In Molecular Characterization of Polymers, Elsevier: Amsterdam, The Netherlands, 2021; pp. 441–498.
- Nucci, N.V.; Vanderkooi, J.M. Effects of salts of the Hofmeister series on the hydrogen bond network of water. J. Mol. Liq. 2008, 143, 160–170. [Google Scholar] [CrossRef]
- Ferreira, L.; Uversky, V.; Zaslavsky, B. Effects of the Hofmeister series of sodium salts on the solvent properties of water. Phys. Chem. Chem. Phys. 2017, 19, 5254–5261. [Google Scholar] [CrossRef]
- Silvério, S.C.; Rodríguez, O.; Teixeira, J.A.; Macedo, E.N.A. The effect of salts on the liquid–liquid phase equilibria of PEG600+ salt aqueous two-phase systems. J. Chem. Eng. Data 2013, 58, 3528–3535. [Google Scholar] [CrossRef]
- Kaul, A. The phase diagram. Aqueous Two-Phase Systems: Methods and Protocols: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2000; pp. 11–21. [Google Scholar]
- Merchuk, J.C.; Andrews, B.A.; Asenjo, J.A. Aqueous two-phase systems for protein separation: Studies on phase inversion. J. Chromatogr. B Biomed. Sci. Appl. 1998, 711, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, F. Zur Lehre von der Wirkung der Salze: Dritte Mittheilung. Arch. Für Exp. Pathol. Und Pharmakol. 1888, 25, 1–30. [Google Scholar] [CrossRef]
- Kunz, W.; Nostro, P.L.; Ninham, B.W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Irmer, G. Hydration of the calcium (II) ion in an aqueous solution of common anions (ClO4−, Cl−, Br−, and NO3−). Dalton Trans. 2013, 42, 3919–3935. [Google Scholar] [CrossRef]
- Burgess, J. Ions in Solution: Basic Principles of Chemical Interactions; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- D’Angelo, P.; Migliorati, V.; Guidoni, L. Hydration properties of the bromide aqua ion: The interplay of first principle and classical molecular dynamics, and X-ray absorption spectroscopy. Inorg. Chem. 2010, 49, 4224–4231. [Google Scholar] [CrossRef]
- Ananthapadmanabhan, K.; Goddard, E. A correlation between clouding and aqueous biphase formation in polyethylene oxide/inorganic salt systems. J. Colloid Interface Sci. 1986, 113, 294–296. [Google Scholar] [CrossRef]
- Ananthapadmanabhan, K.; Goddard, E. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. Langmuir 1987, 3, 25–31. [Google Scholar]
- Ataman, M.; Boucher, E. Properties of aqueous salt solutions of poly (ethylene oxide). J. Polym. Sci. Polym. Phys. Ed. 1982, 20, 1585–1592. [Google Scholar] [CrossRef]
- Bailey, F., Jr.; Callard, R. Some properties of poly (ethylene oxide) 1 in aqueous solution. J. Appl. Polym. Sci. 1959, 1, 56–62. [Google Scholar] [CrossRef]
- Boucher, E.; Hines, P. Effects of inorganic salts on the properties of aqueous poly (ethylene oxide) solutions. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 2241–2251. [Google Scholar] [CrossRef]
- Florin, E.; Kjellander, R.; Eriksson, J.C. Salt effects on the cloud point of the poly (ethylene oxide)+ water system. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80, 2889–2910. [Google Scholar] [CrossRef]
- Shibukawa, M.; Matsuura, K.; Shinozuka, Y.; Mizuno, S.; Oguma, K. Effects of phase-forming cations and anions on the partition of ionic solutes in aqueous polyethylene glycol-inorganic salt two-phase systems. Anal. Sci. 2000, 16, 1039–1044. [Google Scholar] [CrossRef]
- Silvério, S.C.; Wegrzyn, A.; Lladosa, E.; Rodríguez, O.; Macedo, E.A. Effect of aqueous two-phase system constituents in different poly (ethylene glycol)–salt phase diagrams. J. Chem. Eng. Data 2012, 57, 1203–1208. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of ions on the structure of water: Structure making and breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef]
- Titus, A.R.; Ferreira, L.A.; Belgovskiy, A.I.; Kooijman, E.E.; Mann, E.K.; Mann, J.A., Jr.; Meyer, W.V.; Smart, A.E.; Uversky, V.N.; Zaslavsky, B.Y. Interfacial tension and mechanism of liquid-liquid phase separation in aqueous media. Phys. Chem. Chem. Phys. 2020, 22, 4574–4580. [Google Scholar] [CrossRef]
- Zaslavsky, B.Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Madeira, P.P.; Bessa, A.; Álvares-Ribeiro, L.; Aires-Barros, M.R.; Reis, C.A.; Rodrigues, A.E.; Zaslavsky, B.Y. Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. J. Chromatogr. A 2012, 1229, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.; Breydo, L.; Reichardt, C.; Uversky, V.N.; Zaslavsky, B.Y. Effects of osmolytes on solvent features of water in aqueous solutions. J. Biomol. Struct. Dyn. 2017, 35, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.R.; Ferreira, L.A.; Teixeira, J.A.; Uversky, V.N.; Zaslavsky, B.Y. Effects of sodium chloride and sodium perchlorate on properties and partition behavior of solutes in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems. J. Chromatogr. A 2019, 1583, 28–38. [Google Scholar] [CrossRef] [PubMed]
Component 1 | Weight Fraction | Component 2 | Weight Fraction |
---|---|---|---|
PEG-8000 | 0.106 | Na2SO4 | 0.0698 |
PEG-8000 | 0.179 | Na2HPO4 | 0.040 |
PEG-8000 | 0.156 | NaH2PO4 | 0.110 |
PEG-8000 | 0.087 | NaNO3 | 0.311 |
PEG-8000 | 0.061 | NaClO4 | 0.347 |
PEG-8000 | 0.060 | Na2SO4 | 0.052 |
PEG-8000 | 0.098 | NaBr | 0.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titus, A.R.; Madeira, P.P.; Uversky, V.N.; Zaslavsky, B.Y. Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems. Biophysica 2024, 4, 357-368. https://doi.org/10.3390/biophysica4030025
Titus AR, Madeira PP, Uversky VN, Zaslavsky BY. Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems. Biophysica. 2024; 4(3):357-368. https://doi.org/10.3390/biophysica4030025
Chicago/Turabian StyleTitus, Amber R., Pedro P. Madeira, Vladimir N. Uversky, and Boris Y. Zaslavsky. 2024. "Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems" Biophysica 4, no. 3: 357-368. https://doi.org/10.3390/biophysica4030025
APA StyleTitus, A. R., Madeira, P. P., Uversky, V. N., & Zaslavsky, B. Y. (2024). Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems. Biophysica, 4(3), 357-368. https://doi.org/10.3390/biophysica4030025