Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantum Wells Modelling of DNA
2.2. Simulation of DNA Sequences
2.3. Seebeck Coefficient and Transmission Coefficient
3. Results
3.1. Periodic DNA
3.2. Fibonacci Sequenced DNA
3.3. Thue–Morse Sequenced DNA
3.4. Validation of the Model
3.5. Experimental Validation of the Model in Semiconductor Superlattice Sequences
4. Discussion
- (1)
- Utilize the quantum well model presented here for simulation to obtain the transmission coefficient vs. energy for different quasiperiodic and random sequences of quantum well nanostructures.
- (2)
- Select narrower bandwidths that produce a transmission peak = 1 as the criterion for choosing optimal sequences in DNA and superlattices.
- (3)
- Build both superlattices and DNA for the samples below (3a and 3b) or, if resources for step 3a are not available, build the samples based on step 3b.
- Construct the quantum well superlattice (see examples in Appendix A) according to step 2 and use Photoreflectance or other techniques to identify quantum well sequences with optimal CT characteristics.
- Prepare DNA molecules (see the example studies by Li et al. [1]) according to step 2 and use STM, conductivity measurement, or other techniques to identify the quantum well sequences with the best CT characteristics. Measure the hopping resistance and Seebeck coefficient to determine which DNA sequences have the smallest values or cause the thermoelectric effect to become negligible.
- (4)
- Systematically study the above steps and use the experimental results as feedback to optimize the quantum well model and its simulation based on empirical values of the effective mass, barrier height and other related parameters.
- (1)
- Referring to the paper’s processing steps for “gold at the bottom of each pore is then coated with DNA sequences”, these sequences can be Fibonacci, Thue–Morse, and other DNA sequences with different layers, as shown in my simulations.
- (2)
- The generality and functionality of this integration will be explored by identifying broadband absorption with a solvent polarity response that allows dynamic tuning of the distance between nanoparticles. The new DNA sequence design, together with the robust structures made by the new DNA-mediated assembly techniques, will advance technologies in biosensors, microelectronics, and semiconductor devices.
- (3)
- Photoreflectance studies have the potential to be used to study these three-dimensional superlattices when proper selection of materials in a semiconductor superlattice and DNA-mediated assembly are investigated and optimized.
- (4)
- The first 44 boundaries of the Fibonacci sequenced DNA correspond to the first symmetric sequence, i.e., the left half sequence is the mirror image of the right half sequence. This appears to be the criterion for generating a unity transmission peak. At the other boundaries, one or more units in the sequence do not meet the mirror image requirement, which could result in a reduced transmission peak. However, the corresponding position of the transitions remains the same even though the number of boundaries is changed. This preservation of the transmission coefficient of aperiodic superlattices is especially advantageous in the study of optical transitions. This, therefore, gives rise to consistent transition energies among the peaks of the transmission coefficients, in which the combined effect can increase the total transition strength. When the transmission coefficient peaks are narrow and approach 1, the charge transfer of the carriers was found to have also increased, as demonstrated in Section 3.5.
- (5)
- The optical transition strengths of the unconfined states were enhanced for Thue–Morse sequenced DNA and superlattices when compared with samples having periodic or random sequences. The alignment of the unconfined states in different types of DNA-mediated assemblies and superlattices could be yet another interesting area for further exploration and investigation.
- (6)
- This study of aperiodic DNA and superlattices assumes, essentially, a one-dimensional structure. This approach, however, could be extended to a study of other aperiodic systems using three-dimensional structures such as quasiperiodic DNA and superlattices. The majority of the latest research on the self-assembly of DNA nanoparticles is related to the formation of diverse 2D periodic nanopatterns [41], such as tetragonal, hexagonal, rectangular, and oblique structures. There is a need for more explorations in aperiodic nanoparticles, where, for instance, fivefold symmetry [42] in an X-ray diffraction pattern has been seen only in quasiperiodic crystals [43] which are related to the Fibonacci sequence [44]. It would be impossible to generate such patterns with regular, periodic crystals. This research work lays a foundation for exploring the physical behaviors of unconfined states in aperiodic DNA and superlattices. New characteristics and new applications can be discovered when further investigation of aperiodic systems continues.
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (i)
- Periodic, with alternating layers of AlGaAs (A) and GaAs (B);
- (ii)
- Quasiperiodic, with layers deposited according to the Fibonacci sequence;
- (iii)
- Random, with layers A and B selected by a random-number generator.
- (i)
- Periodic sample: A wide gap appears between the top of the barrier and the first unconfined energy band above the barrier;
- (ii)
- Fibonacci sample: Distinct features of the unconfined states appear very close to the barrier;
- (iii)
- Random samples: Overlapping features of unconfined states appeared above the barrier.
References
- Li, Y.; Xiang, L.; Palma, J.L.; Asai, Y.; Tao, N. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 2016, 7, 11294. [Google Scholar] [CrossRef] [PubMed]
- Jortner, J.; Bixon, M.; Langenbacher, T.; Michel-Beyerle, M.E. Charge transfer and transport in DNA. Proc. Natl. Acad. Sci. USA 1998, 95, 12759–12765. [Google Scholar] [CrossRef] [PubMed]
- Boon, E.M.; Barton, J.K. Charge transport in DNA. Curr. Opin. Struct. Biol. 2002, 12, 320–329. [Google Scholar] [CrossRef]
- Rawtani, D.; Kuntmal, B.; Agrawal, Y. Charge transfer in DNA and its diverse modelling approaches. Front. Life Sci. 2016, 9, 214–225. [Google Scholar] [CrossRef]
- Iguchi, K. Semiconductivity and Band Gap of a Double Strand of DNA. J. Phys. Soc. Jpn. 2001, 70, 593–597. [Google Scholar] [CrossRef]
- Wang, H.; Lewis, J.P.; Sankey, O.F. Band-Gap Tunneling States in DNA. Phys. Rev. Lett. 2004, 93, 016401. [Google Scholar] [CrossRef]
- Beratan, D.N. Why Are DNA and Protein Electron Transfer So Different? Annu. Rev. Phys. Chem. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Fujitsuka, M.; Majima, T. Charge transfer dynamics in DNA revealed by time-resolved spectroscopy. Chem. Sci. 2017, 8, 1752–1762. [Google Scholar] [CrossRef]
- Simmons, C.R.; MacCulloch, T.; Krepl, M.; Matthies, M.; Buchberger, A.; Crawford, I.; Šponer, J.; Šulc, P.; Stephanopoulos, N.; Yan, H. The influence of holliday junction sequence and dynamics on DNA crystal self-assembly. Nat. Commun. 2022, 13, 3112. [Google Scholar] [CrossRef]
- Yudiarsah, E. I-V characteristic of Poly(dA)-poly(dT) DNA molecule: The role of internal electric field. J. Phys. Conf. Ser. 2021, 1816, 012060. [Google Scholar] [CrossRef]
- Deffner, M.; Weise, M.P.; Zhang, H.; Mücke, M.; Proppe, J.; Franco, I.; Herrmann, C. Learning Conductance: Gaussian Process Regression for Molecular Electronics. J. Chem. Theory Comput. 2023, 19, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Korol, R.; Segal, D. Machine Learning Prediction of DNA Charge Transport. J. Phys. Chem. B 2019, 123, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, S.; Yan, H. Interfacing DNA nanotechnology and biomimetic photonic complexes: Advances and prospects in energy and biomedicine. J. Nanobiotechnol. 2022, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger, E. What Is Life?: With Mind and Matter and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bormashenko, E. Fibonacci Sequences, Symmetry and Order in Biological Patterns, Their Sources, Information Origin and the Landauer Principle. Biophysica 2022, 2, 292–307. [Google Scholar] [CrossRef]
- Roche, S.; Maciá, E. Electronic transport and thermopower in aperiodic dna sequences. Mod. Phys. Lett. B 2004, 18, 847–871. [Google Scholar] [CrossRef]
- Maciá, E. The role of aperiodic order in science and technology. Rep. Prog. Phys. 2005, 69, 397. [Google Scholar] [CrossRef]
- Julin, S.; Nummelin, S.; Kostiainen, M.A.; Linko, V. DNA nanostructure-directed assembly of metal nanoparticle superlattices. J. Nanoparticle Res. 2018, 20, 119. [Google Scholar] [CrossRef]
- Lin, Q.-Y.; Mason, J.A.; Li, Z.; Zhou, W.; O’Brien, M.N.; Brown, K.A.; Jones, M.R.; Butun, S.; Lee, B.; Dravid, V.P.; et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669–672. [Google Scholar] [CrossRef]
- Barnaby, S.N.; Thaner, R.V.; Ross, M.B.; Brown, K.A.; Schatz, G.C.; Mirkin, C.A. Modular and Chemically Responsive Oligonucleotide “Bonds” in Nanoparticle Superlattices. J. Am. Chem. Soc. 2015, 137, 13566–13571. [Google Scholar] [CrossRef]
- Ferreira, R.; Bastard, G. Unbound states in quantum heterostructures. Nanoscale Res. Lett. 2006, 1, 120–136. [Google Scholar] [CrossRef]
- Austin, E.J.; Jaros, M. Electronic structure and transport properties of GaAs-GaAlAs superlattices in high perpendicular electric fields. J. Appl. Phys. 1987, 62, 558–564. [Google Scholar] [CrossRef]
- Lent, C.S.; Porod, W. Effect of continuum resonances on electronic transport in quantum wells. Superlattices Microstruct. 1988, 4, 77–80. [Google Scholar] [CrossRef]
- Mantela, M.; Lambropoulos, K.; Theodorakou, M.; Simserides, C. Quasi-Periodic and Fractal Polymers: Energy Structure and Carrier Transfer. Materials 2019, 12, 2177. [Google Scholar] [CrossRef]
- Grodick, M.A. DNA-Mediated Charge Transport Signaling Within the Cell. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2016. [Google Scholar]
- Kahn, J.S.; Minevich, B.; Gang, O. Three-dimensional DNA-programmable nanoparticle superlattices. Curr. Opin. Biotechnol. 2020, 63, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe Pathirannehelage, N. Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic. Ph.D. Thesis, Georgia State University, Atlanta, GA, USA, 2011. [Google Scholar]
- Maia, F.F.; Freire, V.N.; Caetano, E.W.S.; Azevedo, D.L.; Sales, F.A.M.; Albuquerque, E.L. Anhydrous crystals of DNA bases are wide gap semiconductors. J. Chem. Phys. 2011, 134, 175101. [Google Scholar] [CrossRef] [PubMed]
- Riklund, R.; Severin, M.; Liu, Y. The thue-morse aperiodic crystal, a link between the fibonacci quasicrystal and the periodic crystal. Int. J. Mod. Phys. B 1987, 1, 121–132. [Google Scholar] [CrossRef]
- Tai, A.C.-C. Study of Unconfined States in Quasi-Periodic Semiconductor Superlattices. Ph.D. Thesis, Boston College, Chestnut Hill, MA, USA, 1991. [Google Scholar]
- Blado, G.; Owens, C.; Meyers, V. Quantum wells and the generalized uncertainty principle. Eur. J. Phys. 2014, 35, 065011. [Google Scholar] [CrossRef]
- Genereux, J.C.; Barton, J.K. Mechanisms for DNA Charge Transport. Chem. Rev. 2010, 110, 1642–1662. [Google Scholar] [CrossRef]
- Xiang, L.; Palma, J.L.; Li, Y.; Mujica, V.; Ratner, M.A.; Tao, N. Gate-controlled conductance switching in DNA. Nat. Commun. 2017, 8, 14471. [Google Scholar] [CrossRef]
- Howorka, S. DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir 2013, 29, 7344–7353. [Google Scholar] [CrossRef]
- Li, Y.; Jin, H.; Zhou, W.; Wang, Z.; Lin, Z.; Mirkin, C.A.; Espinosa, H.D. Ultrastrong colloidal crystal metamaterials engineered with DNA. Sci. Adv. 2023, 9, eadj8103. [Google Scholar] [CrossRef]
- Michelson, A.; Subramanian, A.; Kisslinger, K.; Tiwale, N.; Xiang, S.; Shen, E.; Kahn, J.S.; Nykypanchuk, D.; Yan, H.; Nam, C.-Y.; et al. Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating. Sci. Adv. 2024, 10, eadl0604. [Google Scholar] [CrossRef] [PubMed]
- Majewski, P.W.; Michelson, A.; Cordeiro, M.A.L.; Tian, C.; Ma, C.; Kisslinger, K.; Tian, Y.; Liu, W.; Stach, E.A.; Yager, K.G.; et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 2021, 7, eabf0617. [Google Scholar] [CrossRef] [PubMed]
- Gaba, S.; Chauhan, N.; Chandra, R.; Jain, U. Future advances of artificial biosensor technology in biomedical applications. Talanta Open 2024, 9, 100301. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Huang, Y.; Du, Y.; Zhang, Y.; Cui, Y.; Kong, D. Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens. Bioelectron. 2022, 197, 113739. [Google Scholar] [CrossRef] [PubMed]
- Shani, L.; Michelson, A.N.; Minevich, B.; Fleger, Y.; Stern, M.; Shaulov, A.; Yeshurun, Y.; Gang, O. DNA-assembled superconducting 3D nanoscale architectures. Nat. Commun. 2020, 11, 5697. [Google Scholar] [CrossRef]
- Hou, B.; Zhang, W.-B.; Shao, Y. Unconventional 2D Periodic Nanopatterns Based on Block Molecules. Chin. J. Polym. Sci. 2023, 41, 1508–1524. [Google Scholar] [CrossRef]
- Sparavigna, A.C.; Baldi, M. Symmetry and the golden ratio in the analysis of a regular pentagon. Int. J. Math. Educ. Sci. Technol. 2016, 48, 1–11. [Google Scholar] [CrossRef]
- Caspar, D.L.D.; Fontano, E. Five-fold symmetry in crystalline quasicrystal lattices. Proc. Natl. Acad. Sci. USA 1996, 93, 14271–14278. [Google Scholar] [CrossRef]
- Jagannathan, A. The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality. Rev. Mod. Phys. 2021, 93, 045001. [Google Scholar] [CrossRef]
- Perez, J.-C. The “3 Genomic Numbers” Discovery: How Our Genome Single-Stranded DNA Sequence Is “Self-Designed” as a Numerical Whole. Appl. Math. 2013, 4, 37–53. [Google Scholar] [CrossRef]
- Perez, J.-C. Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618. Interdiscip. Sci. Comput. Life Sci. 2010, 2, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, M.E.B.; Shimabukuro, A.I. Nucleotide frequencies in human genome and fibonacci numbers. Bull. Math. Biol. 2008, 70, 643–653. [Google Scholar] [CrossRef] [PubMed]
- D’Acunto, M. Protein-DNA target search relies on quantum walk. Biosystems 2021, 201, 104340. [Google Scholar] [CrossRef]
- Buarque, A.; Dias, W. Aperiodic space-inhomogeneous quantum walks: Localization properties, energy spectra, and enhancement of entanglement. Phys. Rev. E 2019, 100, 032106. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.C.M.; Zwang, T.J.; Bedoya, S.; Barton, J.K. Effective Distance for DNA-Mediated Charge Transport between Repair Proteins. ACS Cent. Sci. 2019, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 2013, 494, 77–80. [Google Scholar] [CrossRef]
- Preuss, I.; Rosenberg, M.; Yakhini, Z.; Anavy, L. Efficient DNA-based data storage using shortmer combinatorial encoding. Sci. Rep. 2024, 14, 7731. [Google Scholar] [CrossRef]
- Fan, Q.; Yang, L.; Chao, J. Recent Advances in Dynamic DNA Nanodevice. Chemistry 2023, 5, 1781–1803. [Google Scholar] [CrossRef]
- Discovery of DNA Double Helix: Watson and Crick|Learn Science at Scitable. Available online: http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397 (accessed on 22 June 2024).
- Pinho, A.J.; Garcia, S.P.; Pratas, D.; Ferreira, P.J.S.G. DNA Sequences at a Glance. PLoS ONE 2013, 8, e79922. [Google Scholar] [CrossRef]
- Singh, R.; Sophiarani, Y. A report on DNA sequence determinants in gene expression. Bioinformation 2020, 16, 422–431. [Google Scholar] [CrossRef]
- Exploring DNA Sequences. Available online: https://www.labxchange.org/library/items/lb:LabXchange:571811ba:html:1 (accessed on 21 June 2024).
- Clarke, R.; Moustakas, T.; Bajema, K.; Grier, D.; Dos Passos, W.; Merlin, R. Structural fluctuations and randomness in GaAsAlxGa1-xAs superlattices. Superlattices Microstruct. 1988, 4, 371–374. [Google Scholar] [CrossRef]
- Song, J.J.; Yoon, Y.S.; Fedotowsky, A.; Kim, Y.B.; Schulman, J.N.; Tu, C.W.; Huang, D.; Morkoc, H. Barrier-width dependence of optical transitions involving unconfined energy states in GaAs-AlGaAs superlattices. Phys. Rev. B 1986, 34, 8958–8962. [Google Scholar] [CrossRef]
- Reddy, U.K.; Ji, G.; Henderson, T.; Morkoç, H.; Schulman, J.N. Investigation of GaAs/(Al,Ga)As multiple quantum wells by photoreflectance. J. Appl. Phys. 1987, 62, 145–151. [Google Scholar] [CrossRef]
- Bastard, G.; Ziemelis, U.O.; Delalande, C.; Voos, M.; Gossard, A.C.; Wiegmann, W. Bound and virtual bound states in semiconductor quantum wells. Solid State Commun. 1984, 49, 671–674. [Google Scholar] [CrossRef]
- Merlin, R.; Bajema, K.; Clarke, R.; Juang, F.-Y.; Bhattacharya, P.K. Quasiperiodic GaAs-AlAs Heterostructures. Phys. Rev. Lett. 1985, 55, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Cardona, M. Modulation spectroscopy. Solid State Phys. Supplement 11; Academic Press: New York, NY, USA, 1969; ISBN 978-0-12-607771-1. [Google Scholar]
- Pollak, F.H.; Shen, H. Photoreflectance characterization of semiconductors and semiconductor heterostructures. J. Electron. Mater. 1990, 19, 399–406. [Google Scholar] [CrossRef]
- Chomette, A.; Deveaud, B.; Regreny, A.; Bastard, G. Observation of Carrier Localization in Intentionally Disordered Gaas/Gaalas Superlattices. Phys. Rev. Lett. 1986, 57, 1464–1467. [Google Scholar] [CrossRef]
- Dal Negro, L. Optics of Aperiodic Structures: Fundamentals and Device Applications; Jenny Stanford Publishing: Singapore, 2013. [Google Scholar]
- Barriuso, A.G.; Monzón, J.J.; Sánchez-Soto, L.L.; Felipe, A. Comparing omnidirectional reflection from periodic and quasiperiodic one-dimensional photonic crystals. Opt. Express 2005, 13, 3913–3920. [Google Scholar] [CrossRef]
- Maciá, E. Exploiting quasiperiodic order in the design of optical devices. Phys. Rev. B 2001, 63, 205421. [Google Scholar] [CrossRef]
- Maciá, E.; Domínguez-Adame, F.; Sánchez, A. Effects of the electronic structure on the dc conductance of Fibonacci superlattices. Phys. Rev. B 1994, 49, 9503–9510. [Google Scholar] [CrossRef] [PubMed]
- Dal Negro, L.; Yi, J.H.; Nguyen, V.; Yi, Y.; Michel, J.; Kimerling, L.C. Spectrally enhanced light emission from aperiodic photonic structures. Appl. Phys. Lett. 2005, 86, 261905. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Shen, H.; Parayanthal, P.; Pollak, F.H.; Coutts, T.; Aharoni, H. Electroreflectance and photoreflectance study of the space-charge region in semiconductors: (In-Sn-O)/InP as a model system. Phys. Rev. B 1988, 37, 4044–4050. [Google Scholar] [CrossRef] [PubMed]
DNA Nucleobases | me | mh |
---|---|---|
G | 4.0 | 4.0 |
A | 5.4 | 3.8 |
C | 5.8 | 3.5 |
T | 6.3 | 15 |
layer 1–32 01011010110110101101011011010110 |
layer 33–64 11010110101101101011010110110101 |
layer 65–96 10110101101011011010110110101101 |
layer 97–128 01101101011010110110101101101011 |
layer 129–160 01011011010110101101101011011010 |
layer 161–192 11010110110101101101011010110110 |
layer 193–224 10110101101101011011010110101101 |
layer 225–256 10101101101011010110110101101011 |
layer 1–32 01101001100101101001011001101001 |
layer 33–64 10010110011010010110100110010110 |
layer 65–96 10010110011010010110100110010110 |
layer 97–128 01101001100101101001011001101001 |
layer 129–160 10010110011010010110100110010110 |
layer 161–192 01101001100101101001011001101001 |
layer 193–224 01101001100101101001011001101001 |
layer 225–256 10010110011010010110100110010110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, A. Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences. Biophysica 2024, 4, 411-441. https://doi.org/10.3390/biophysica4030027
Tai A. Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences. Biophysica. 2024; 4(3):411-441. https://doi.org/10.3390/biophysica4030027
Chicago/Turabian StyleTai, Alan. 2024. "Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences" Biophysica 4, no. 3: 411-441. https://doi.org/10.3390/biophysica4030027
APA StyleTai, A. (2024). Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences. Biophysica, 4(3), 411-441. https://doi.org/10.3390/biophysica4030027