Effects of Water Content and Mesh Size on Tea Bag Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Tea Bags
2.3. Laboratory Studies
2.3.1. Water Content Experiment
2.3.2. Total Mass Loss Experiment
2.3.3. Minimum Leaching Experiment
2.3.4. Maximum Leaching Experiment
2.4. Field Experiments
2.5. Calculation and Statistics
3. Results
3.1. Effects of Water Content on Tea Bag Decomposition
3.2. Leaching Loss of Teas
3.3. Contribution of Leaching Loss to Tea Bag Decomposition
3.4. Effects of Mesh Size on Tea Bag Decomposition
4. Discussion
4.1. Effects of Water Content on Tea Bag Decomposition
4.2. Potential Contribution of Leaching to Tea Bag Decomposition Rate
4.3. Effects of Mesh Size on Tea Bag Decomposition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cornwell, W.K.; Cornelissen, J.H.C.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Pérez-Harguindeguy, N.; et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008, 11, 1065–1071. [Google Scholar] [CrossRef]
- Zhang, D.; Hui, D.; Luo, Y.; Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 2008, 1, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Keuskamp, J.A.; Dingemans, B.J.J.; Lehtinen, T.; Sarneel, J.M.; Hefting, M.M. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 2013, 4, 1070–1075. [Google Scholar] [CrossRef]
- Duddigan, S.; Shaw, L.J.; Alexander, P.D.; Collins, C.D. Chemical Underpinning of the Tea Bag Index: An Examination of the Decomposition of Tea Leaves. Appl. Environ. Soil Sci. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Suzuki, S.N.; Ataka, M.; Djukic, I.; Enoki, T.; Fukuzawa, K.; Hirota, M.; Hishi, T.; Hiura, T.; Hoshizaki, K.; Ida, H.; et al. Harmonized data on early stage litter decomposition using tea material across Japan. Ecol. Res. 2019, 34, 575–576. [Google Scholar] [CrossRef]
- Petraglia, A.; Cacciatori, C.; Chelli, S.; Fenu, G.; Calderisi, G.; Gargano, D.; Abeli, T.; Orsenigo, S.; Carbognani, M. Litter decomposition: Effects of temperature driven by soil moisture and vegetation type. Plant Soil 2018, 435, 187–200. [Google Scholar] [CrossRef]
- Djukic, I.; Kepfer-Rojas, S.; Schmidt, I.K.; Larsen, K.S.; Beier, C.; Berg, B.; Verheyen, K.; Caliman, A.; Paquette, A.; Gutiérrez-Girón, A.; et al. Early stage litter decomposition across biomes. Sci. Total. Environ. 2018, 628–629, 1369–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, P.; Schile-Beers, L.M.; Mozdzer, T.J.; Chmura, G.L.; Dinter, T.; Kuzyakov, Y.; De Groot, A.V.; Esselink, P.; Smit, C.; D’Alpaos, A.; et al. Global-change effects on early-stage decomposition processes in tidal wetlands—Implications from a global survey using standardized litter. Biogeosciences 2018, 15, 3189–3202. [Google Scholar] [CrossRef] [Green Version]
- Fujii, S.; Mori, A.S.; Koide, D.; Makoto, K.; Matsuoka, S.; Osono, T.; Isbell, F. Disentangling relationships between plant diversity and decomposition processes under forest restoration. J. Appl. Ecol. 2017, 54, 80–90. [Google Scholar] [CrossRef]
- Mori, T.; Hashimoto, T.; Sakai, Y. Evaluating the tea bag method as a potential tool for detecting the effects of added nutri-ents and their interactions with climate on litter decomposition. bioRxiv 2021. [Google Scholar] [CrossRef]
- Powers, J.S.; Montgomery, R.A.; Adair, E.C.; Brearley, F.Q.; DeWalt, S.J.; Castanho, C.T.; Chave, J.; Deinert, E.; Ganzhorn, J.U.; Gilbert, M.E.; et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 2009, 97, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.A.; Tordoff, G.M.; Eggers, T.; Jones, T.H.; Newington, J.E. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 2002, 99, 317–323. [Google Scholar] [CrossRef]
- Mori, T.; Ohta, S.; Ishizuka, S.; Konda, R.; Wicaksono, A.; Heriyanto, J.; Hardjono, A. Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biol. Fertil. Soils 2012, 49, 13–21. [Google Scholar] [CrossRef]
- Nykvist, N. Leaching and Decomposition of Litter I. Experiments on Leaf Litter of Fraxinus excelsior. Oikos 1959, 10, 190–211. [Google Scholar] [CrossRef]
- R Core Team. Version 3.5.3. In R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org (accessed on 18 January 2021).
- R Core Team. Version 4.0.2. In R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 18 January 2021).
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Neckles, H.A.; Neill, C. Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiologia 1994, 286, 155–165. [Google Scholar] [CrossRef]
- Didion, M.; Repo, A.; Liski, J.; Forsius, M.; Bierbaumer, M.; Djukic, I. Towards Harmonizing Leaf Litter Decomposition Studies Using Standard Tea Bags—A Field Study and Model Application. Forests 2016, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.R.; Parkinson, D. Patterns of water absorption and leaching in pine and aspen leaf litter. Soil Biol. Biochem. 1988, 20, 257–258. [Google Scholar] [CrossRef]
- Ibrahima, A.; Biyanzi, P.; Halima, M. Changes in organic compounds during leaf litter leaching: Laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon. iForest-Biogeosci. For. 2008, 1, 27–33. [Google Scholar] [CrossRef]
Chemical Properties | Green Tea | Rooibos Tea |
---|---|---|
Mean ± SD | Mean ± SD | |
Nonpolar extractives 1 | 0.066 ± 0.003 | 0.049 ± 0.013 |
Water solubles 1 | 0.493 ± 0.021 | 0.215 ± 0.009 |
Acid solubles 1 | 0.283 ± 0.017 | 0.289 ± 0.040 |
Acid insoluble 1 | 0.156 ± 0.009 | 0.444 ± 0.040 |
Total C (%) 1 | 49.055 ± 0.109 | 50.511 ± 0.286 |
Total N (%) 1 | 4.019 ± 0.049 | 1.185 ± 0.048 |
Alkyl C 2 | 0.230 ± 0.032 | 0.152 ± 0.044 |
O-alkyl C 2 | 0.570 ± 0.003 | 0.714 ± 0.018 |
Aromatic C 2 | 0.146 ± 0.020 | 0.102 ± 0.017 |
Carbonyl C 2 | 0.054 ± 0.009 | 0.032 ± 0.009 |
Source | Degree of Freedom | F Value | p Value |
---|---|---|---|
temperature | 2 | 26.3 | p < 0.001 |
time | 2 | 210.8 | p < 0.001 |
tea | 1 | 973.2 | p < 0.001 |
Temperature × time | 4 | 8.3 | p < 0.001 |
Temperature × tea | 2 | 1.6 | 0.21 |
time × tea | 2 | 10.6 | p < 0.001 |
three factors | 4 | 1.0 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Aoyagi, R.; Taga, H.; Sakai, Y. Effects of Water Content and Mesh Size on Tea Bag Decomposition. Ecologies 2021, 2, 175-186. https://doi.org/10.3390/ecologies2010010
Mori T, Aoyagi R, Taga H, Sakai Y. Effects of Water Content and Mesh Size on Tea Bag Decomposition. Ecologies. 2021; 2(1):175-186. https://doi.org/10.3390/ecologies2010010
Chicago/Turabian StyleMori, Taiki, Ryota Aoyagi, Hiroki Taga, and Yoshimi Sakai. 2021. "Effects of Water Content and Mesh Size on Tea Bag Decomposition" Ecologies 2, no. 1: 175-186. https://doi.org/10.3390/ecologies2010010
APA StyleMori, T., Aoyagi, R., Taga, H., & Sakai, Y. (2021). Effects of Water Content and Mesh Size on Tea Bag Decomposition. Ecologies, 2(1), 175-186. https://doi.org/10.3390/ecologies2010010