Modeling Trophic Cascades to Identify Key Mammalian Species for Ecosystem Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanistic Trophic Cascade Model Design
2.2. Look up Table of Characteristic Variables of Mammal Species
2.3. Model Calibration and Validation
2.4. Cluster Analysis of Survey Locations
2.5. Selection of Characteristic Variables of Mammalian Species
3. Results
3.1. Data Clustering of Mammal Species Surveys
3.2. Model Validation
3.3. The Role of Mammal Species Characteristic Variables in the Stability of Energy Availability in Ecosystems
3.4. Changes in Ecosystem Biomass Allocation and Mammal Species Diversity
3.5. Formulating Criteria and Indicators for Key Mammalian Species
3.6. Key Mammalian Species of the Ecosystem
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehman, C.L.; Tilman, D. Biodiversity, stability, and productivity in Competitive Communities. Am. Nat. 2000, 156, 534–552. [Google Scholar] [CrossRef]
- Loreau, M.; de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.R.; Carpenter, S.R. Stability and Diversity of Ecosystems. Science 2007, 317, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. Biodiversity: Population Versus Ecosystem Stability. Ecology 1996, 77, 350–363. [Google Scholar] [CrossRef]
- Alexander, D.E. Ecological stress. In Environmental Geology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 159–160. [Google Scholar]
- Freedman, B. Ecological Effects of Environmental Stressors. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Gonzalez, A.; Rayfield, B.; Lindo, Z. The disentangled bank: How loss of habitat fragments and disassembles ecological networks. Am. J. Bot. 2011, 98, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef]
- Payton, I.J.; Fenner, M.; Lee, W.G. Keystone species: The concept and its relevance for conservation management in New Zealand. In Science for Conservation; Clelland, L., Ed.; New Zealand Department of Conservation: Wellington, New Zealand, 2002; Volume 1, pp. 5–29. [Google Scholar]
- Jordán, F. Keystone species and food webs. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1733–1741. [Google Scholar] [CrossRef]
- Libralato, S. Keystone species and keystoneness. In Encyclopedia of Ecology; Fath, B., Ed.; Elsevier: Oxford, UK, 2018; pp. 451–456. [Google Scholar]
- Wu, J.; Liu, Y.; Sui, H.; Xu, B.; Zhang, C.; Ren, Y.; Xue, Y. Using network analysis to identify keystone species in the food web of Haizhou Bay, China. Mar. Freshw. Res. 2020, 71, 469–481. [Google Scholar] [CrossRef]
- Hillebrand, H.; Blasius, B.; Borer, E.T.; Chase, J.M.; Downing, J.A.; Eriksson, B.K.; Filstrup, C.T.; Harpole, W.S.; Hodapp, D.; Larsen, S.; et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018, 55, 169–184. [Google Scholar] [CrossRef]
- Libralato, S.; Christensen, V.; Pauly, D. A method for identifying keystone species in food web models. Ecol. Modell. 2006, 195, 153–171. [Google Scholar] [CrossRef]
- Fleishman, E.; Murphy, D.D.; Brussard, P.F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 2000, 10, 569–579. [Google Scholar] [CrossRef]
- Nally, R.M.; Fleishman, E. Using “indicator” species to model species richness: Model development and predictions. Ecol. Appl. 2002, 12, 79–92. [Google Scholar] [CrossRef]
- Nally, R.M.; Fleishman, E. A successful predictive model of species richness based on indicator species. Conserv. Biol. 2004, 18, 646–654. [Google Scholar] [CrossRef]
- Berg, S.; Christianou, M.; Jonsson, T.; Ebenman, B. Using sensitivity analysis to identify keystone species and keystone links in size-based food webs. Oikos 2011, 120, 510–519. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Zhang, W.J. Determination of keystone species in CSM food web: A topological analysis of network structure. Netw. Biol. 2015, 5, 13–33. [Google Scholar]
- Brodie, J.F.; Giordano, A. Lack of trophic release with large mammal predators and prey in Borneo. Biol. Conserv. 2013, 163, 58–67. [Google Scholar] [CrossRef]
- Moreira, X.; Mooney, K.A. Influence of plant genetic diversity on interactions between higher trophic levels. Biol. Lett. 2013, 9, 20130133. [Google Scholar] [CrossRef]
- Alaniz, A.J.; Carvajal, M.A.; Vergara, P.M.; Fierro, A.; Moreira-Arce, D.; Rojas-Osorio, A.; Soto, G.E.; Rodewald, A.D. Trophic behavior of specialist predators from a macroecological approach: The case of the magellanic woodpecker in south American temperate forests. Glob. Ecol. Conserv. 2020, 24, e01285. [Google Scholar] [CrossRef]
- Chen, H.; Hagerty, S.; Crotty, S.M.; Bertness, M.D. Direct and indirect trophic effects of predator depletion on basal trophic levels. Ecology 2016, 97, 338–346. [Google Scholar] [CrossRef]
- Galiana, N.; Arnoldi, J.F.; Barbier, M.; Acloque, A.; de Mazancourt, C.; Loreau, M. Can biomass distribution across trophic levels predict trophic cascades? Ecol. Lett. 2021, 24, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Huaylla, C.A.; Nacif, M.E.; Coulin, C.; Kuperman, M.N.; Garibaldi, L.A. Decoding information in multilayer ecological networks: The keystone species case. Ecol. Modell. 2021, 460, 109734. [Google Scholar] [CrossRef]
- Pontarp, M.; Bunnefeld, L.; Cabral, J.S.; Etienne, R.S.; Fritz, S.A.; Gillespie, R.; Graham, C.H.; Hagen, O.; Hartig, F.; Huang, S.; et al. The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends Ecol. Evol. 2019, 34, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Jahani, A.; Rayegani, B. Forest landscape visual quality evaluation using artificial intelligence techniques as a decision support system. Stoch. Environ. Res. Risk Assess. 2020, 34, 1473–1486. [Google Scholar] [CrossRef]
- Leote, P.; Cajaiba, R.L.; Cabral, J.A.; Brescovit, A.D.; Santos, M. Are data-mining techniques useful for selecting ecological indicators in biodiverse regions? Bridges between market basket analysis and indicator value analysis from a case study in the neotropics. Ecol. Indic. 2020, 109, 105833. [Google Scholar] [CrossRef]
- Bouchet, P.J.; Peterson, A.T.; Zurell, D.; Dormann, C.F.; Schoeman, D.; Ross, R.E.; Snelgrove, P.; Sequeira, A.M.M.; Whittingham, M.J.; Wang, L.; et al. Better Model Transfers Require Knowledge of Mechanisms. Trends Ecol. Evol. 2019, 34, 489–490. [Google Scholar] [CrossRef]
- Forrester, J.W. Principles of Systems; Productivity Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Robinson, S. Simulation: The Practice of Model Development and Use Stewart Robinson; Palgrave Macmillan: New York, NY, USA, 2004. [Google Scholar]
- Jiménez, E.; Recalde, L.; Silva, M. Forrester diagrams and continuous Petri nets: A comparative view. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2001, 2, 85–94. [Google Scholar]
- Law, A.M.; Kelton, W.D. Simulation Modelling & Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991; Volume 1. [Google Scholar]
- Kleijnen, J.P.C. Validation of Simulation, with and Without Real Data. Tilbg. Univ. 1998. (CentER Discussion Paper; Vol. 1998–22). Operations Research. Available online: https://www.researchgate.net/publication/4865681_Validation_of_simulation_with_and_without_real_data (accessed on 2 July 2023).
- Kunin, W.E.; Harte, J.; He, F.; Hui, C.; Jobe, R.T.; Ostling, A.; Polce, C.; Šizling, A.; Smith, A.B.; Smith, K.; et al. Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecol. Monogr. 2018, 88, 170–187. [Google Scholar] [CrossRef]
- Jaillard, B.; Deleporte, P.; Loreau, M.; Violle, C. Correction: A combinatorial analysis using observational data identifies species that govern ecosystem functioning. PLoS ONE 2018, 13, e02036812018. [Google Scholar] [CrossRef]
- Jung, M. Predictability and transferability of local biodiversity environment relationships. PeerJ 2022, 10, e138722022. [Google Scholar] [CrossRef]
- Chiarucci, A.; Enright, N.J.; Perry, G.L.W.; Miller, B.P.; Lamont, B.B. Performance of nonparametric species richness estimators in a high diversity plant community. Divers. Distrib. 2003, 9, 283–295. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Dormann, C.F.; Huijbregts, M.A.J.; Martins, I. Population density estimates for terrestrial mammal species. Glob. Ecol. Biogeogr. 2022, 31, 978–994. [Google Scholar] [CrossRef]
- Cohen, J.E.; Xu, M.; Schuster, W.S.F. Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc. Natl. Acad. Sci. USA 2012, 109, 15829–15834. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Vis, M.; Knight, R.; Pool, S.; Wolfe, W.; Seibert, J. Model Calibration Criteria for Estimating Ecological Flow Characteristics. Water 2015, 7, 2358–2381. [Google Scholar] [CrossRef]
- Sedighkia, M.; Datta, B. Linking SVM based habitat model and evolutionary optimisation for managing environmental impacts of hydropower plants. River Res. Appl. 2023, 39, 897–910. [Google Scholar] [CrossRef]
- Oliver, T.; Gillings, S.; Girardello, M.; Rapacciuolo, G.; Brereton, T.; Siriwardena, G.; Roy, D.B.; Pywell, R.; Fuller, R. Population density but not stability can be predicted from species distribution models. J. Appl. Ecol. 2012, 49, 581–590. [Google Scholar] [CrossRef]
- Tucker, M.A.; Santini, L.; Carbone, C.; Mueller, T. Mammal population densities at a global scale are higher in human-modified areas. Ecography 2021, 44, 1–13. [Google Scholar] [CrossRef]
- Tian, Y.; Yue, T.; Zhu, L.; Clinton, N. Modeling population density using land cover data. Ecol. Modell. 2005, 189, 72–88. [Google Scholar] [CrossRef]
- Zhu, M.; Zaman, M.; Wang, M.; Vitekere, K.; Ma, J.; Jiang, G. Population Density and Driving Factors of North China Leopards in Tie Qiao Shan Nature Reserve. Animals 2021, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Kamranfar, S.; Damirchi, F.; Pourvaziri, M.; Abdunabi Xalikovich, P.; Mahmoudkelayeh, S.; Moezzi, R.; Vadiee, A. A Partial Least Squares Structural Equation Modelling Analysis of the Primary Barriers to Sustainable Construction in Iran. Sustainability 2023, 15, 13762. [Google Scholar] [CrossRef]
- Ren, J.; Su, K.; Chang, Y.; Wen, Y. Formation of Environmentally Friendly Tourist Behaviors in Ecotourism Destinations in China. Forests 2021, 12, 424. [Google Scholar] [CrossRef]
- Malhi, Y.; Riutta, T.; Wearn, O.R.; Deere, N.J.; Mitchell, S.L.; Bernard, H.; Majalap, N.; Nilus, R.; Davies, Z.G.; Ewers, R.M.; et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 2022, 612, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Ahumada, J.A.; Silva, C.E.F.; Gajapersad, K.; Hallam, C.; Hurtado, J.; Martin, E.; McWilliam, A.; Mugerwa, B.; O’Brien, T.; Rovero, F.; et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2703–2711. [Google Scholar] [CrossRef]
- Prevedello, J.A.; Dickman, C.R.; Vieira, M.V.; Vieira, E.M. Population responses of small mammals to food supply and predators: A global meta-analysis. J. Anim. Ecol. 2013, 82, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhou, W.; Gao, K.; Swaisgood, R.R.; Wei, F. Seasonal competition between sympatric species for a key resource: Implications for conservation management. Biol. Conserv. 2019, 234, 1–6. [Google Scholar] [CrossRef]
- Erena, M.G. Assessment of medium and large-sized mammals and their behavioral response toward anthropogenic activities in Jorgo-Wato Protected Forest, Western Ethiopia. Ecol. Evol. 2022, 12, e8529. [Google Scholar] [CrossRef]
- Liow, L.H.; Fortelius, M.; Bingham, E.; Lintulaakso, K.; Mannila, H.; Flynn, L.; Stenseth, N.C. Higher origination and extinction rates in larger mammals. Proc. Natl. Acad. Sci. USA 2008, 105, 6097–6102. [Google Scholar] [CrossRef]
- Morand, S.; Krasnov, B.R.; Poulin, R.; Degen, A.A. Micromammals and macroparasites: Who is who and how do they interact? In Micromammals and Macroparasites; Springer: Tokyo, Japan, 2006; pp. 3–9. [Google Scholar]
- Deng, C.; Froese, R.E.; Zhang, S.; Lu, Y.; Xu, X.; Li, Q. Development of improved and comprehensive growth and yield models for genetically improved stands. Ann. For. Sci. 2020, 77, 89. [Google Scholar] [CrossRef]
- McMahon, S.M.; Parker, G.G.; Miller, D.R. Evidence for a recent increase in forest growth. Proc. Natl. Acad. Sci. USA 2010, 107, 3611–3615. [Google Scholar] [CrossRef] [PubMed]
- Vanclay, J.K. Forest Growth and Yield Modeling. In Encyclopedia of Environmetrics; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Li, C.; Barclay, H.; Roitberg, B.; Lalonde, R. Forest Productivity Enhancement and Compensatory Growth: A Review and Synthesis. Front. Plant Sci. 2020, 11, 575211. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.D.; Brose, U.; Rall, B.C.; Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 2016, 7, 12718. [Google Scholar] [CrossRef] [PubMed]
- Buzhdygan, O.Y.; Meyer, S.T.; Weisser, W.W.; Eisenhauer, N.; Ebeling, A.; Borrett, S.R.; Buchmann, N.; Cortois, R.; De Deyn, G.B.; de Kroon, H.; et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 2020, 4, 393–405. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 2017, 92, 1434–1458. [Google Scholar] [CrossRef]
- Galetti, M.; Giacomini, H.C.; Bueno, R.S.; Bernardo, C.S.S.; Marques, R.M.; Bovendorp, R.S.; Steffler, C.E.; Rubim, P.; Gobbo, S.K.; Donatti, C.I.; et al. Priority areas for the conservation of Atlantic forest large mammals. Biol. Conserv. 2009, 142, 1229–1241. [Google Scholar] [CrossRef]
- Uchmański, J. Can a More Variable Species Win Interspecific Competition? Acta Biotheor. 2021, 69, 591–628. [Google Scholar] [CrossRef]
- Sinclair, A.R.E. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2003, 358, 1729–1740. [Google Scholar] [CrossRef]
- Sinclair, A.R.E. the Role of Mammals As Ecosystem Landscapers. Alces 2003, 39, 161–176. [Google Scholar]
- Morellet, N.; Gaillard, J.; Hewison, A.J.M.; Ballon, P.; Boscardin, Y.; Duncan, P.; Klein, F.; Maillard, D. Indicators of ecological change: New tools for managing populations of large herbivores. J. Appl. Ecol. 2007, 44, 634–643. [Google Scholar] [CrossRef]
- Marques, F.C.; Bochio, G.M.; Lima, M.R.; Anjos, L.D. The selection of indicator species of birds and mammals for the monitoring of restoration areas in a highly fragmented forest landscape. An. Acad. Bras. Cienc. 2023, 95, e20200922. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.A.; Wang, Y.; Borchetta, M.; Gaines, M.S. Genetic diversity and spatial structure of a keystone species in fragmented pine rockland habitat. Biol. Conserv. 2007, 138, 256–268. [Google Scholar] [CrossRef]
- Martínez-Jauregui, M.; Touza, J.; White, P.C.L.; Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 2021, 121, 107203. [Google Scholar] [CrossRef]
- Delibes-Mateos, M.; Smith, A.T.; Slobodchikoff, C.N.; Swenson, J.E. The paradox of keystone species persecuted as pests: A call for the conservation of abundant small mammals in their native range. Biol. Conserv. 2011, 144, 1335–1346. [Google Scholar] [CrossRef]
- Shukla, I.; Gaynor, K.M.; Worm, B.; Darimont, C.T. The diversity of animals identified as keystone species. Ecol. Evol. 2023, 13, e10561. [Google Scholar] [CrossRef] [PubMed]
- Zook, D.P. Prioritizing Symbiosis to Sustain Biodiversity: Are Symbionts Keystone Species? In Symbiosis; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–12. [Google Scholar]
- Yoon, C.; Moon, S.; Lee, H. Symbiotic Relationships in Business Ecosystem: A Systematic Literature Review. Sustainability 2022, 14, 2252. [Google Scholar] [CrossRef]
- Blatrix, R.; McKey, D.; Born, C. Consequences of past climate change for species engaged in obligatory interactions. Comptes Rendus Geosci. 2013, 345, 306–315. [Google Scholar] [CrossRef]
- Hale, S.L.; Koprowski, J.L. Ecosystem-level effects of keystone species reintroduction: A literature review. Restor. Ecol. 2018, 26, 439–445. [Google Scholar] [CrossRef]
- Delibes-Mateos, M.; Redpath, S.M.; Angulo, E.; Ferreras, P.; Villafuerte, R. Rabbits as a keystone species in southern Europe. Biol. Conserv. 2007, 137, 149–156. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Edgar, G.J.; Stuart-Smith, R.D.; Bates, A.E.; Waldock, C.; Brandl, S.J.; Kininmonth, S.; Ling, S.D.; Duffy, J.E.; Rasher, D.B.; et al. Species richness and identity both determine the biomass of global reef fish communities. Nat. Commun. 2021, 12, 6875. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Solan, M.; Symstad, A.; DiÁz, S.; Gessner, M.O.; Buchmann, N.; Degrange, V.; Grime, P.; Hulot, F.; Mermillod-Blondin, F.; et al. Species diversity, functional diversity, and ecosystem functioning. In Biodiversity and Ecosystem Functioning; Oxford University Press: Oxford, UK, 2002; pp. 195–208. [Google Scholar]
- Root-Bernstein, M.; Ebensperger, L.A. Meta-analysis of the effects of small mammal disturbances on species diversity, richness and plant biomass. Austral Ecol. 2013, 38, 289–299. [Google Scholar] [CrossRef]
- Mudappa, D.; Kumar, A.; Chellam, R. Diet and Fruit Choice of the Brown Palm Civet Paradoxurus Jerdoni, a Viverrid Endemic to the Western Ghats Rainforest, India. Trop. Conserv. Sci. 2010, 3, 282–300. [Google Scholar] [CrossRef]
- Dehaudt, B.; Amir, Z.; Decoeur, H.; Gibson, L.; Mendes, C.; Moore, J.H.; Nursamsi, I.; Sovie, A.; Luskin, M.S. Common palm civets Paradoxurus hermaphroditus are positively associated with humans and forest degradation with implications for seed dispersal and zoonotic diseases. J. Anim. Ecol. 2022, 91, 794–804. [Google Scholar] [CrossRef]
- Kalies, E.L.; Covington, W.W. Small mammal community maintains stability through compensatory dynamics after restoration of a ponderosa pine forest. Ecosphere 2012, 3, 1–11. [Google Scholar] [CrossRef]
- Lacher, T.E.; Davidson, A.D.; Fleming, T.H.; Gómez-Ruiz, E.P.; McCracken, G.F.; Owen-Smith, N.; Peres, C.A.; Vander Wall, S.B. The functional roles of mammals in ecosystems. J. Mammal. 2019, 100, 942–964. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects Of Biodiversity On Ecosystem Functioning: A Consensus Of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Wen, Z.; Pan, Q.; Li, R.; Yang, Y.; Jiang, Z.; Zheng, H.; Ouyang, Z. Species–size networks elucidate the effects of biodiversity on aboveground biomass in tropical forests. Ecol. Indic. 2022, 141, 109067. [Google Scholar] [CrossRef]
No | Data | Data Collection Methods and Data Sources |
---|---|---|
1 | Presence of mammal species | Present and absent survey of mammal species at 78 locations conducted in 2011–2021 on Borneo Island, Indonesia |
2 | Land cover map |
|
3 | Climate data (solar radiation, air temperature, humidity, wind, and rain) | Climate data documentation was obtained from the BMKG measurement station closest to the survey location and NASA climate database (2011–2021) |
4 | Topographic map of Indonesia, scale 1:50,000 | Data from years 2012–2020 in shp file format |
5 | Net primary production (NPP) | MODIS level 2b satellite interpretation (NPP and fPAR) |
6 | Soil map of Kalimantan, scale 1:250,000 | Ministry of Agriculture of the Republic of Indonesia, RePPPort, BIG |
7 | Land system map, scale 1:250,000 | Interpretation of ecosystem types according to land systems by HCVRN Indonesia (source: RePPPort, HCVRN Indonesia) |
8 | Characteristics of mammal species:
| Systematic literature review. The main data sources used are as follows:
|
No | Characteristic of Mammal Species | Symbol | Unit/Code |
---|---|---|---|
1 | Trophic level | Tr | 1 = herbivore; 2 = omnivore; 3 = carnivore |
Types of mammal food sources (no 2–13): | |||
2 | Mammal | Mm | 1 = primary; 2 = secondary; 3 = tertiary |
3 | Bird | Mb | 1 = primary; 2 = secondary; 3 = tertiary |
4 | Herpet | Mu | 1 = primary; 2 = secondary; 3 = tertiary |
5 | Fish | Mi | 1 = primary; 2 = secondary; 3 = tertiary |
6 | Invertebrate | Ms | 1 = primary; 2 = secondary; 3 = tertiary |
7 | Seeds | Mbi | 1 = primary; 2 = secondary; 3 = tertiary |
8 | Fruits | Mbu | 1 = primary; 2 = secondary; 3 = tertiary |
9 | Leaves | Mlf | 1 = primary; 2 = secondary; 3 = tertiary |
10 | Nectar | Mne | 1 = primary; 2 = secondary; 3 = tertiary |
11 | Wood/bark | Mws | 1 = primary; 2 = secondary; 3 = tertiary |
12 | Roots | Mrt | 1 = primary; 2 = secondary; 3 = tertiary |
13 | Herbaceous/succulent/grass | Mhs | 1 = primary; 2 = secondary; 3 = tertiary |
14 | Body weight | Bm | Gram/individual |
15 | Basal metabolic rate | Bmr | Liter O2/hour/individual |
16 | Home range | Hr | Hectare/individual |
17 | Number of litters per birth | Ls | Child/parent |
18 | Age of sexual maturity | Asm | Month/female individual |
19 | Biological age | Ub | year |
20 | Social group size | Sgs | Number/group |
21 | Solitary | Sol | 0 = no; 1 = Yes |
22 | Arboreal habitat preference | Pha | % (percent) |
23 | Grounds surface habitat preference | Phg | % (percent) |
24 | Aquatic habitat preference | Phw | % (percent) |
Cluster | ∑ Locations | ∑ Species | Number of Mammal Species Present | ||||
---|---|---|---|---|---|---|---|
Big * | Small * | Herbivore | Omnivore | Carnivore | |||
K1a | 4 | 30 ± 2.4 | 12 ± 2.2 | 18 ± 3.6 | 11 ± 2.2 | 13 ± 1.3 | 6 ± 0.5 |
K1b | 12 | 21 ± 2.4 | 9 ± 1.8 | 12 ± 2.3 | 6 ± 2.2 | 11 ± 3.2 | 3 ± 1.2 |
K1c | 9 | 13 ± 2.1 | 5 ± 1.4 | 8 ± 2.0 | 3 ± 1.1 | 7 ± 1.1 | 2 ± 1.2 |
K2a | 12 | 34 ± 3.0 | 13 ± 2.4 | 21 ±2.4 | 12 ± 2.2 | 15 ± 1.9 | 8 ± 1.7 |
K2b | 9 | 23 ± 3.3 | 9 ± 2.7 | 14 ±1.5 | 7 ± 2.4 | 9 ± 1.5 | 6 ± 1.8 |
K2c | 13 | 14 ± 3.0 | 7 ± 1.8 | 7 ± 1.7 | 5 ± 2.1 | 7 ± 1.3 | 2 ± 1.1 |
K3 | 6 | 34 ± 7.3 | 13 ± 1.7 | 22 ± 7.0 | 13 ± 2.9 | 14 ± 4.7 | 7 ± 2.2 |
K4a | 5 | 29 ± 2.9 | 10 ± 2.0 | 19 ± 1.3 | 10 ± 1.5 | 13 ± 2.4 | 7 ± 1.5 |
K4b | 4 | 22 ± 1.3 | 10 ± 0.6 | 12 ± 1.4 | 7 ± 1.7 | 10 ± 1.7 | 5 ± 2.6 |
K4c | 4 | 13 ± 1.0 | 7 ± 2.1 | 6 ± 1.4 | 4 ± 0.5 | 7 ± 1.0 | 2 ± 0.5 |
Tropic Level | Ecosystem | Model Variables (Characteristics of Mammalian Species) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bm | Bmr | Dt | Ams | Ls | Ub | Hr | Pha | Phg | ||
Herbivore | K1 | 8.8 | 13.6 | 12.7 | 8.7 | 27.3 | 6.7 | 8.0 | 7.0 | 7.9 |
K2 | 10.3 | 13.7 | 12.1 | 8.0 | 33.0 | 6.8 | 8.3 | 6.6 | 5.1 | |
K3 | 12.0 | 11.0 | 12.0 | 9.4 | 17.6 | 8.9 | 9.8 | 7.7 | 7.8 | |
K4 | 10.3 | 13.3 | 10.9 | 7.1 | 26.7 | 7.9 | 7.8 | 6.3 | 8.5 | |
Omnivore | K1 | 16.0 | 15.1 | 14.8 | 14.6 | 15.5 | 11.4 | 13.0 | 11.7 | 11.4 |
K2 | 14.0 | 16.0 | 14.8 | 14.5 | 16.9 | 11.5 | 14.4 | 12.2 | 8.0 | |
K3 | 12.2 | 14.9 | 14.9 | 14.5 | 15.4 | 12.6 | 15.2 | 11.4 | 13.2 | |
K4 | 14.8 | 15.8 | 14.9 | 13.3 | 18.2 | 12.2 | 13.9 | 13.2 | 13.4 | |
Carnivore | K1 | 18.9 | 16.8 | 20.1 | 16.8 | 21.6 | 14.8 | 17.8 | 14.9 | 14.3 |
K2 | 26.2 | 22.0 | 25.0 | 21.4 | 25.2 | 16.9 | 18.7 | 20.5 | 12.4 | |
K3 | 58.7 | 59.7 | 45.1 | 41.4 | 145.7 | 71.3 | 42.2 | 51.1 | 40.1 | |
K4 | 25.5 | 21.2 | 22.9 | 20.5 | 31.4 | 19.1 | 20.5 | 21.4 | 21.2 | |
All species | K1 | 8.7 | 8.9 | 8.8 | 7.1 | 14.1 | 5.6 | 7.5 | 6.0 | 5.9 |
K2 | 8.9 | 9.7 | 8.4 | 7.5 | 16.8 | 5.6 | 8.0 | 5.6 | 3.9 | |
K3 | 10.1 | 8.1 | 10.1 | 8.1 | 10.2 | 7.2 | 8.1 | 6.6 | 6.2 | |
K4 | 9.3 | 9.6 | 7.8 | 6.7 | 16.0 | 5.9 | 8.0 | 5.6 | 7.0 |
Variables | Factor Loading | Communality | Coefficient | ||
---|---|---|---|---|---|
F1 | F2 | F1 | F2 | ||
Bm | 0.122 | −0.772 * | 0.658 | 0.072 | −0.515 |
Bmr | 0.871 * | −0.082 | 0.806 | 0.449 | −0.033 |
Dt | −0.290 | −0.726 * | 0.708 | −0.175 | −0.438 |
Ub | 0.181 | −0.176 | 0.835 | −0.053 | 0.265 |
Ams | −0.103 | −0.566 * | 0.614 | −0.120 | −0.191 |
Ls | 0.875 * | 0.125 | 0.792 | 0.458 | 0.090 |
Hr | 0.535 * | −0.627 * | 0.727 | 0.301 | −0.432 |
Pha | 0.205 | −0.269 | 0.691 | −0.034 | 0.137 |
Phg | 0.173 | −0.202 | 0.893 | −0.050 | 0.122 |
Variables | Factor Loading | Communality | Coefficient | ||
---|---|---|---|---|---|
F1 | F2 | F1 | F3 | ||
Bm | 0.025 | −0.286 | 0.783 | −0.137 | 0.185 |
Bmr | 0.866 * | −0.018 | 0.783 | 0.478 | 0.009 |
Dt | −0.178 | −0.775 * | 0.741 | −0.140 | −0.420 |
Ub | 0.157 | −0.149 | 0.784 | −0.152 | 0.198 |
Ams | 0.011 | −0.859 * | 0.776 | −0.012 | −0.613 |
Ls | 0.822 * | 0.077 | 0.774 | 0.431 | 0.022 |
Hr | 0.592 * | −0.281 | 0.721 | 0.301 | 0.014 |
Pha | 0.361 | −0.633 * | 0.610 | 0.204 | −0.363 |
Phg | 0.253 | −0.125 | 0.865 | −0.070 | −0.027 |
Variables | Factor Loading | Communality | Coefficient | ||
---|---|---|---|---|---|
F1 | F2 | F1 | F2 | ||
Bm | 0.476 | −0.079 | 0.748 | 0.085 | 0.121 |
Bmr | 0.189 | −0.798 * | 0.734 | 0.063 | −0.469 |
Dt | 0.864 * | 0.201 | 0.851 | 0.577 | 0.199 |
Ub | 0.216 | −0.140 | 0.925 | −0.047 | 0.097 |
Ams | 0.718 * | −0.359 | 0.759 | 0.467 | −0.166 |
Ls | −0.086 | −0.903 * | 0.852 | −0.129 | −0.558 |
Hr | 0.562 * | −0.442 | 0.685 | 0.275 | −0.192 |
Pha | 0.243 | −0.224 | 0.628 | −0.130 | 0.061 |
Phg | 0.025 | −0.214 | 0.780 | −0.363 | 0.123 |
Variables | Factor Loading | Communality | Coefficient | ||
---|---|---|---|---|---|
F1 | F2 | F1 | F2 | ||
Bm | 0.665 * | −0.456 | 0.709 | 0.130 | −0.309 |
Bmr | 0.944 * | 0.037 | 0.903 | 0.266 | 0.151 |
Dt | 0.403 | −0.804 * | 0.843 | 0.039 | −0.516 |
Ub | 0.159 | −0.135 | 0.941 | −0.048 | 0.065 |
Ams | −0.188 | −0.771 * | 0.750 | −0.155 | −0.500 |
Ls | 0.855 * | 0.239 | 0.827 | 0.250 | 0.289 |
Hr | 0.908 * | −0.225 | 0.892 | 0.233 | −0.036 |
Pha | 0.107 | −0.235 | 0.952 | −0.018 | 0.139 |
Phg | 0.893 * | −0.250 | 0.868 | 0.227 | −0.070 |
Criteria | Indicator | Species Characteristics | Species Characteristic Variables | References |
---|---|---|---|---|
Morphology and structure | Population density | Species with significant population density and wide distribution play a crucial role in maintaining ecosystem stability. | K1: Np, Ls, Ams, Hr K2: Np, Ls, Ams, Hr K3: Np, Ls, Ams, Hr K4: Np, Ls, Ams, Hr | [40,68,69,70,71] |
Genetic diversity | Species with high genetic diversity tend to be more adaptive to environmental changes and may play an essential role in ecosystem recovery. | Not modeled | [10,72,73] | |
Ecological role | Supporting species | Species that support ecosystem structure or function, such as those providing continuous biomass for other species. | K1: Np, Ls, Ams, Bm K2: Np, Ls, Ams K3: Np, Ls, Ams K4: Np, Ls, Ams, Bm | [68,74,75] |
Symbiotic interactions | Species that form important symbiotic relationships with other organisms in the ecosystem. These relationships encompass various interactions, such as parasitism, herbivory, and mutualism, highlighting the complexity of interspecies relationships. | K1: Bm, Dt K2: Dt K3: Dt K4: Bm, Dt | [76,77,78] | |
Dependence on other species | Species that are key to the survival of other species within the food web or mutualistic interactions. | K1: Bm, Dt K2: Dt K3: Dt K4: Bm, Dt | ||
Functional | Contribution to nutrient cycling | Species that play a crucial role in nutrient cycling, such as those efficient in accumulating and recycling soil nutrients. | K1: Bmr, Dt K2: Bmr, Dt, Pha K3: Bmr, Dt K4: Bmr, Dt, Phg | [68,69,79] |
Microclimate regulator | Species that contribute to regulating the microclimate, including temperature and humidity, in tropical rainforest ecosystems. | Not modeled | ||
Resilience to disruption | Species with the ability to withstand or recover from external disturbances, such as fires or extreme weather events. | K1: Dt K2: Dt K3: Dt K4: Dt | ||
Threats and protection | Conservation status | Conservation classification based on the Red List or legal protection status. | Not modeled | |
Ecosystem interconnectedness | The existence of food web relationships | Species that serve as crucial nodes in the food web or food chain. | K1: Bm, Bmr, Dt K2: Bmr, Dt K3: Bmr, Dt K4: Bm, Bmr, Dt | |
Contribution to ecosystem balance | Species that play an important role in maintaining ecosystem balance, such as those that control pest populations or invasive species. | K1: Dt, Hr K2: Dt, Hr K3: Dt, Hr K4: Dt, Hr | [10,75] |
Ecosystem Type | ∑ Mammal Species | Family | Species | Trophic Level | Kv | |
---|---|---|---|---|---|---|
K1 Plantation and industrial forest plantation | K1a | 30 ± 2.4 | Muridae | Niviventer cremoriventer | Omnivore | 9.65 |
Tupaiidae | Tupaia gracilis | Omnivore | 9.32 | |||
Muridae | Maxomys whiteheadi | Omnivore | 9.11 | |||
Tupaiidae | Tupaia tana | Omnivore | 8.44 | |||
Sciuridae | Ratufa affinis | Herbivore | 8.20 | |||
K1b | 21 ± 2.4 | Muridae | Rattus exulans | Omnivore | 10.07 | |
Muridae | Rattus argentiventer | Omnivore | 8.36 | |||
Viverridae | Paradoxurus hermaphroditus | Omnivore | 6.50 | |||
Tragulidae | Tragulus kanchil | Herbivore | 6.37 | |||
Hystricidae | Hystrix brachyura | Herbivore | 6.22 | |||
K1c | 13 ± 2.1 | Sciuridae | Callosciurus notatus | Omnivore | 8.28 | |
Viverridae | Paradoxurus hermaphroditus | Omnivore | 6.75 | |||
Suidae | Sus barbatus | Omnivore | 5.67 | |||
Tragulidae | Tragulus kanchil | Herbivore | 5.61 | |||
Cervidae | Rusa unicolor | Herbivore | 5.21 | |||
K2 Shrublands | K2a | 34 ± 3.0 | Tupaiidae | Tupaia glis | Omnivore | 9.89 |
Sciuridae | Callosciurus notatus | Omnivore | 8.34 | |||
Viverridae | Viverra tangalunga | Omnivore | 7.39 | |||
Sciuridae | Callosciurus prevostii | Herbivore | 7.05 | |||
Viverridae | Paradoxurus hermaphroditus | Omnivore | 7.04 | |||
K2b | 23 ± 3.3 | Sciuridae | Ratufa bicolor | Herbivore | 9.15 | |
Sciuridae | Callosciurus notatus | Omnivore | 8.71 | |||
Viverridae | Paradoxurus hermaphroditus | Omnivore | 7.74 | |||
Viverridae | Viverra tangalunga | Omnivore | 7.69 | |||
Tragulidae | Tragulus kanchil | Herbivore | 7.62 | |||
K2c | 14 ± 3.0 | Sciuridae | Callosciurus notatus | Omnivore | 9.58 | |
Herpestidae | Herpestes brachyurus | Omnivore | 8.54 | |||
Hystricidae | Hystrix brachyura | Herbivore | 7.32 | |||
Tragulidae | Tragulus napu | Herbivore | 6.96 | |||
Cercopithecidae | Macaca fascicularis | Omnivore | 6.88 | |||
K3 Forest | K3 | 34 ± 7.3 | Sciuridae | Petinomys genibarbis | Herbivore | 11.86 |
Tupaiidae | Tupaia glis | Omnivore | 9.87 | |||
Emballonuridae | Emballonura alecto | Carnivore | 9.84 | |||
Ptilocercidae | Ptilocercus lowii | Omnivore | 9.46 | |||
Tupaiidae | Tupaia dorsalis | Omnivore | 9.23 | |||
K4 Mixed | K4a | 29 ± 2.9 | Muridae | Rattus tiomanicus | Omnivore | 9.62 |
Tupaiidae | Tupaia dorsalis | Omnivore | 9.38 | |||
Sciuridae | Lariscus hosei | Herbivore | 7.43 | |||
Sciuridae | Callosciurus notatus | Omnivore | 7.12 | |||
Sciuridae | Iomys horsfieldii | Herbivore | 7.05 | |||
K4b | 22 ± 1.3 | Sciuridae | Callosciurus notatus | Omnivore | 8.61 | |
Cynocephalidae | Galeopterus variegatus | Herbivore | 7.58 | |||
Sciuridae | Callosciurus prevostii | Herbivore | 7.58 | |||
Lorisidae | Nycticebus menagensis | Omnivore | 7.54 | |||
Viverridae | Paradoxurus hermaphroditus | Omnivore | 7.17 | |||
K4c | 13 ± 1.0 | Sciuridae | Callosciurus notatus | Omnivore | 13.90 | |
Herpestidae | Herpestes brachyurus | Omnivore | 12.78 | |||
Viverridae | Viverra tangalunga | Omnivore | 11.65 | |||
Cercopithecidae | Macaca fascicularis | Omnivore | 11.37 | |||
Cervidae | Muntiacus muntjak | Herbivore | 10.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risdiyanto, I.; Santosa, Y.; Santoso, N.; Sunkar, A. Modeling Trophic Cascades to Identify Key Mammalian Species for Ecosystem Stability. Ecologies 2024, 5, 585-609. https://doi.org/10.3390/ecologies5040035
Risdiyanto I, Santosa Y, Santoso N, Sunkar A. Modeling Trophic Cascades to Identify Key Mammalian Species for Ecosystem Stability. Ecologies. 2024; 5(4):585-609. https://doi.org/10.3390/ecologies5040035
Chicago/Turabian StyleRisdiyanto, Idung, Yanto Santosa, Nyoto Santoso, and Arzyana Sunkar. 2024. "Modeling Trophic Cascades to Identify Key Mammalian Species for Ecosystem Stability" Ecologies 5, no. 4: 585-609. https://doi.org/10.3390/ecologies5040035
APA StyleRisdiyanto, I., Santosa, Y., Santoso, N., & Sunkar, A. (2024). Modeling Trophic Cascades to Identify Key Mammalian Species for Ecosystem Stability. Ecologies, 5(4), 585-609. https://doi.org/10.3390/ecologies5040035