Prediction of Environmentally Suitable Areas for Zephyranthes (Amaryllidaceae) in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database of Species
2.2. Bioclimatic Variables
2.3. Selection of the Environmental Predictors
2.4. Construction of Potential Distribution Models
2.5. Evaluation of Models
3. Results
3.1. Layers of Bioclimatic Variables
3.2. Evaluation of the Models and Contribution of Bioclimatic Variables
3.3. Known Distribution of the Genus Zephyranthes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef]
- Hufnagel, L.; Mics, F. Introductory Chapter: Biodiversity of Mexico. In Natural History and Ecology of Mexico and Central America; Hufnagel, L., Ed.; IntechOpen: London, UK, 2021; Volume 1, pp. 3–15. [Google Scholar] [CrossRef]
- Villaseñor, J.L.; Ortiz, E.; Hernández-Flores, M.M. The Vascular Plant Species Endemic or Nearly Endemic to Puebla, Mexico. Bot. Sci. 2023, 101, 1207–1221. [Google Scholar] [CrossRef]
- Leszczyñska-Borys, H.; Borys, M.; Serna, A.E. Mexican Geophytes—Biodiversity, Conservation and Horticultural Aplication. Acta Hortic. 2000, 523, 205–210. [Google Scholar] [CrossRef]
- Tapia-Campos, E.; Rodriguez-Dominguez, J.M.; Revuelta-Arreola, M.M.; Van Tuyl, J.M.; Barba-Gonzalez, R. Mexican geophytes II. The genera Hymenocallis, Sprekelia and Zephyranthes. Floric. Ornam. Biotechnol. 2012, 6, 129–139. [Google Scholar]
- Nair, J.J.; van Staden, J. Antiviral alkaloid principles of the plant family Amaryllidaceae. Phytomedicine 2023, 108, 154480. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, F.; Zhang, J.; Li, X.; Zhang, M.; Hao, X.; Xue, Y.; Li, Y.; Horgen, F.D.; Yao, G.; et al. Cytotoxic alkaloids from the whole plants of Zephyranthes candida. J. Nat. Prod. 2012, 75, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Kulhánková, A.; Cahlíková, L.; Novák, Z.; Macáková, K.; Kuneš, J.; Opletal, L. Alkaloids from Zephyranthes robusta Baker and Their Acetylcholinesterase-and Butyrylcholinesterase-Inhibitory Activity. Chem. Biodivers. 2013, 10, 1120–1127. [Google Scholar] [CrossRef]
- Zhan, G.; Zhou, J.; Liu, R.; Liu, T.; Guo, G.; Wang, J.; Xiang, M.; Xue, Y.; Luo, Z.; Zhang, Y.; et al. Galanthamine, Plicamine, and Secoplicamine Alkaloids from Zephyranthes candida and Their Anti-acetylcholinesterase and Anti-inflammatory Activities. J. Nat. Prod. 2016, 79, 760–766. [Google Scholar] [CrossRef]
- Zhan, G.; Liu, J.; Zhou, J.; Sun, B.; Aisa, H.A.; Yao, G. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2017, 127, 771–780. [Google Scholar] [CrossRef]
- Zhan, G.; Zhou, J.; Liu, J.; Huang, J.; Zhang, H.; Liu, R.; Yao, G. Acetylcholinesterase Inhibitory Alkaloids from the Whole Plants of Zephyranthes carinata. J. Nat. Prod. 2017, 80, 2462–2471. [Google Scholar] [CrossRef]
- Wang, H.Y.; Qu, S.M.; Wang, Y.; Wang, H.T. Cytotoxic and anti-inflammatory active plicamine alkaloids from Zephyranthes grandiflora. Fitoterapia 2018, 130, 163–168. [Google Scholar] [CrossRef]
- Kohelová, E.; Maříková, J.; Korábečný, J.; Hulcová, D.; Kučera, T.; Jun, D.; Chlebek, J.; Jenčo, J.; Šafratová, M.; Hrabinová, M.; et al. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorg. Chem. 2021, 107, 104567. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.T.; Yildirim, A.B.; Turker, A.U. Enhancement of alkaloid content (galanthamine and lycorine) and antioxidant activities (enzymatic and non-enzymatic) unders salt stress in summer snowflake (Leucojum aestivum L.). S. Afr. J. Bot. 2021, 140, 182–188. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2024. Available online: http://www.plantsoftheworldonline.org/ (accessed on 21 July 2024).
- WFO. Zephyranthes Herb. Published on the Internet. 2024. Available online: http://www.worldfloraonline.org/taxon/wfo-4000041195 (accessed on 18 July 2024).
- Carnevali, G.; Duno, R.; Tapia, J.L.; Ramírez, I.M. Reassessment of Zephyranthes (Amaryllidaceae) in the Yucatán Peninsula including a new species, Z. orellanae. J. Torrey Bot. Soc. 2010, 137, 39–48. [Google Scholar] [CrossRef]
- Flagg, R.O.; Smith, G.L.; García-Mendoza, A.J. Zephyranthes pseudoconcolor (Amaryllidaceae: Amaryllidoideae), a New Species from Mexico, and Clarification of Z. concolor. Novon J. Bot. Nomencl. 2018, 26, 290–297. [Google Scholar] [CrossRef]
- Tapia-Campos, E.; Rodriguez-Dominguez, J.; Quiñones-Aguilar, E.; Dupre, P.; Barba-Gonzalez, R. Molecular cytogenetic characterization of wild Mexican geophytes. Acta Hortic. 2016, 1000, 499–504. [Google Scholar] [CrossRef]
- Centeno-Betanzos, L.Y.; Reyes-Chilpa, R.; Pigni, N.B.; Jankowski, C.K.; Torras-Claveria, L.; Bastida, J. Plants of the ‘Libellus de Medicinalibus Indorum Herbis’ from Mexico, 1552. Zephyranthes fosteri (Amaryllidaceae) Alkaloids. Chem. Biodivers. 2021, 18, e2000834. [Google Scholar] [CrossRef]
- Rodríguez-Flores, Z.E.; Fernández-Pavía, Y.L.; García-Cué, J.; De la Cruz-Torres, E.; Jaen-Contreras, D. Evaluation of the application of fertilizers and biostimulants in Zephyranthes lindleyana Herb (Amarylidaceae) under greenhouse conditions. Agro Product. 2023, 1, 9. [Google Scholar] [CrossRef]
- Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. Divers. Distrib. 2013, 19, 1217–1223. [Google Scholar] [CrossRef]
- Qazi, A.W.; Saqib, Z.; Zaman-ul-Haq, M. Trends in species distribution modelling in context of rare and endemic plants: A systematic review. Ecol. Process. 2022, 11, 40. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species current and future distributions. Ecol. Model. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Mota-Vargas, C.; Luévano-Encarnación, A.; Ortega-Andrade, H.M.; Prieto-Torres, D.A. Una breve introducción a los modelos de nicho ecológico. In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos para su Estudio, 1st ed.; Moreno, C., Ed.; Universidad Autónoma del Estado de Hidalgo; Libermex: Ciudad de México, Mexico, 2019; Volume 1, pp. 39–63. Available online: https://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/340 (accessed on 2 June 2023).
- Aguirre-Gutiérrez, J.; Serna-Chavez, H.M.; Villalobos-Arambula, A.R.; Pérez de la Rosa, J.A.; Raes, N. Similar but not equivalent: Ecological niche comparison across closely–related Mexican white pines. Divers. Distrib. 2015, 21, 245–257. [Google Scholar] [CrossRef]
- Martínez-Méndez, N.; Aguirre-Planter, E.; Eguiarte, L.E.; Jaramillo-Correa, J.P. Modelado de nicho ecológico de las especies del género Abies (pinaceae) en México: Algunas implicaciones taxonómicas y para la conservación. Bot. Sci. 2016, 94, 362–371. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Murillo-Pérez, G.; Rodríguez, A.; Sánchez-Carbajal, D.; Ruiz-Sanchez, E.; Carrillo-Reyes, P.; Munguía-Lino, G. Spatial distribution of species richness and endemism of Solanum(Solanaceae) in Mexico. Phytotaxa 2022, 558, 147–177. [Google Scholar] [CrossRef]
- Yun, H.-G.; Lee, J.-W.; An, J.-B.; Yu, S.-B.; Bak, G.-P.; Shin, H.-T.; Park, W.-G.; Kim, S.-J. Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora koreensis Nakai) Using NBR and MaxEnt Model Analysis—For the Forest Fire Area of Bibongsan (Mt.) in Yanggu-. Korean J. Plant Resour. 2022, 35, 169–182. [Google Scholar] [CrossRef]
- Jiménez, A.A.; Marceleño Flores SM, L.; González, O.N.; Vilchez, F.F. Potential Coffee Distribution in a Central-Western Region of Mexico. Ecologies 2023, 4, 269–287. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.; Gao, Y.; Zhang, S. Predicting Ecologically Suitable Areas of Cotton Cultivation Using the MaxEnt Model in Xinjiang, China. Ecologies 2023, 4, 654–670. [Google Scholar] [CrossRef]
- Espejo-Serna, A.; López-Ferrari, A.R. La familia Bromeliaceae en México. Bot. Sci. 2018, 96, 533–554. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Diversidad y distribución de la familia Asteraceae en Mexico. Bot. Sci. 2018, 96, 332–358. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, G.; Zhao, X.; Chen, H.; Si, Q.; Wu, J. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan, China. Ecol. Evol. 2021, 11, 13052–13067. [Google Scholar] [CrossRef] [PubMed]
- Solís-Montero, L.; Vega-Polanco, M.; Vázquez-Sánchez, M.; Suárez-Mota, M.E. Ecological niche modeling of interactions in a buzz-pollinated invasive weed. Glob. Ecol. Conserv. 2022, 39, e02279. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Ramírez, J.M.H.; Bautista, L.L.; Díaz, M.M.M.; Santiago-García, W.; Ruiz-Aquino, F. Potential distribution of riparian trees in the Bajo Río Grijalva sub basin. Bot. Sci. 2022, 100, 534–549. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Zhao, Z.; Nengwen, X.; Shen, M.; Li, J. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hemami, M.-R.; Kaboli, M.; Shabani, F. MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecol. Evol. 2023, 13, e9827. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 22 September 2024).
- RStudio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 22 September 2024).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Ortiz-Solorio, C.A.; Villaseñor, J.L.; Ortiz, E.; Silva, J.T.; Estrada-Godoy, F. Interpolation of Mexican soil properties at a scale of 1:1,000,000. Geoderma 2014, 213, 29–35. [Google Scholar] [CrossRef]
- Sillero, N.; Barbosa, A.M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 2021, 35, 213–226. [Google Scholar] [CrossRef]
- Braeken, J.; Van Assen, M.A. An empirical Kaiser criterion. Psychol. Methods 2017, 22, 450. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.P.; Caithness, N.; Villet, M.H. A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Divers. Distrib. 2001, 7, 15–27. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberon, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Giannini, T.C.; Takahasi, A.; Medeiros MC, M.P.; Saraiva, A.M.; Alves-dos-Santos, I. Ecological niche modeling and principal component analysis of Krameria Loefl. (Krameriaceae). J. Arid. Environ. 2011, 75, 870–872. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76(2). R Package Version 1.0.7. 2017. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 15 August 2024).
- Jolliffe, I.T. Choosing a Subset of Principal Components or Variables. In Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002; Volume 1, pp. 111–149. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Research, A. A Brief Tutorial on Maxent. 2021. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 15 August 2024).
- Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. 2024. Available online: https://www.qgis.org/ (accessed on 24 September 2024).
- Hijmans, R. raster: Geographic Data Analysis and Modeling; R package version 3.6-28; 2023. Available online: https://CRAN.R-project.org/package=raster (accessed on 8 August 2024).
- Morrone, J.J.; Escalante, T.; Rodríguez-Tapia, G. Mexican biogeographic provinces: Map and shapefiles. In Zootaxa; Magnolia Press: Waco, TX, USA, 2017; Volume 4277, pp. 277–279. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1998, 240, 1285–1293. [Google Scholar] [CrossRef]
- Escobar, L.E.; Qiao, H.; Cabello, J.; Peterson, A.T. Ecological niche modeling re-examined: A case study with the Darwin’s fox. Ecol. Evol. 2018, 8, 4757–4770. [Google Scholar] [CrossRef]
- Martin, A.K.; Root, K.V. Challenges and Opportunities for Terrapene carolina carolina under Different Climate Scenarios. Remote Sens. 2020, 12, 836. [Google Scholar] [CrossRef]
- De Mast, J. Agreement and Kappa-Type Indices. Am. Stat. 2007, 61, 148–153. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Knox, G.W. Rainly, Zephyranthes and Habranthus spp.: Low Maintenance Flowering Bulbs for Florida Gardens; Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2009; 12p. [Google Scholar]
- Argueta Guzmán, M.P.; Barrales Alcalá, D.A.; Galicia Pérez, A.; Golubov, J.; Mandujano, M.C. Sistema reproductivo y visitantes florales de Zephyranthes carinata Herb (Asparagales: Amaryllidaceae). Cactáceas Suculentas Mex. 2013, 58, 100–117. [Google Scholar]
- Oleas, N.H.; Feeley, K.J.; Fajardo, J.; Meerow, A.W.; Gebelein, J.; Francisco-Ortega, J. Muddy boots beget wisdom: Implications for rare or endangered plant species distribution models. Diversity 2019, 11, 10. [Google Scholar] [CrossRef]
- Pulparambil, H.; Pradeep, N.S. Ecological niche modelling in identifying hábitats for effective species conservation: A study on Endemic aquatic plant Crinum malabaricum. J. Nat. Conserv. 2023, 76, 126517. [Google Scholar] [CrossRef]
- Meerow, A.W.; Guy, C.L.; Li, Q.-B.; Yang, S.-L. Phylogeny of the American Amaryllidaceae Based on nrDNA ITS Sequences. Syst. Bot. 2000, 25, 708. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Guo, G.; Hu, Y.; Wei, J.; Liu, J. Species delimitation of the Dermacentor ticks based on phylogenetic clustering and niche modeling. PeerJ 2019, 7, e6911. [Google Scholar] [CrossRef]
- Lin, H.Y.; Gu, K.J.; Li, W.H.; Zhao, Y.P. Integrating coalescent-based species delimitation with ecological niche modeling delimited two species within the Stewartia sinensis complex (Theaceae). J. Syst. Evol. 2022, 60, 1037–1048. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of soil texture suitability zones for soybean cultivation: A case study in continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Vargas-Amado, G.; Castro-Castro, A.; Harker, M.; Vargas-Amado, M.E.; Villaseñor, J.L.; Ortiz, E.; Rodríguez, A. Western Mexico is a priority area for the conservation of Cosmos (Coreopsideae, Asteraceae), based on richness and track analysis. Biodivers. Conserv. 2020, 29, 545–569. [Google Scholar] [CrossRef]
- Iracheta-Lara, I.Z.; Hernández-Quiroz, N.S.; Pinedo-Alvarez, A.; Santellano-Estrada, E.; Prieto-Amparán, J.A.; Villarreal-Guerrero, F.; Morales-Nieto, C.R. Potential distribution of five native grass species in northern Mexico and their dynamics due to climate variability. Pol. J. Ecol. 2021, 69, 73–83. [Google Scholar] [CrossRef]
- Lozano-Sardaneta, Y.N.; Rodríguez-Rojas, J.J.; Huerta, H.; Benítez-Alva, J.I.; Santander-Gómez, A.A.; Luna-Luna, A.M.; Cervantes, C.; Correa-Morales, F.; Contreras-Ramos, A. Surveillance of sand flies (Psychodidae, Phlebotominae) from Mexico: Altitudinal and climatic patterns after historical and new geographic records in endemic areas of leishmaniasis. Acta Trop. 2024, 256, 107270. [Google Scholar] [CrossRef]
- Scales, K.L.; Miller, P.I.; Ingram, S.N.; Hazen, E.L.; Bograd, S.J.; Phillips, R.A. Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models. Divers. Distrib. 2016, 22, 212–224. [Google Scholar] [CrossRef]
- Sillero, N.; Campos, J.C.; Arenas-Castro, S.; Barbosa, A.M. A curated list of R packages for ecological niche modelling. Ecol. Model. 2023, 476, 110242. [Google Scholar] [CrossRef]
- Li, Y.P.; Gao, X.; An, Q.; Sun, Z.; Wang, H.B. Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China. Sci. Rep. 2022, 12, 15614. [Google Scholar] [CrossRef] [PubMed]
Specie | Acronym | Number of Occurrences |
---|---|---|
Zephyranthes arenicola Brandegee | ZEARE | 6 |
Zephyranthes brevipes Standl. | ZEBRE | 56 |
Zephyranthes carinata Herb. | ZECAR | 77 |
Zephyranthes chichimeca T.M.Howard & S.Ogden | ZECHI | 14 |
Zephyranthes chlorosolen (Herb.) D.Diettr | ZECHL | 144 |
Zephyranthes citrina Baker | ZECIT | 31 |
Zephyranthes clintiae Traub | ZECLI | 8 |
Zephyranthes concolor (Lindl.) Benth. & Hook.f | ZECON | 56 |
Zephyranthes conzattii Greenm. | ZECON | 1 |
Zephyranthes crociflora T.M.Howard & S.Ogden | ZECRC | 3 |
Zephyranthes drummondii D.Don in R.Sweet | ZEDRU | 76 |
Zephyranthes fosteri Traub | ZEFOS | 716 |
Zephyranthes katheriniae L.B.Spencer | ZEKAT | 4 |
Zephyranthes latissimifolia L.B.Spencer | ZELAT | 7 |
Zephyranthes lindleyana Herb. | ZELIN | 28 |
Zephyranthes longifolia Hemsl. | ZELON | 54 |
Zephyranthes minuta (Kunth) D.Dietr. | ZEMIN | 60 |
Zephyranthes morrisclintii Traub & T.M.Howard | ZEMOR | 14 |
Zephyranthes nelsonii Greenm. | ZENEL | 3 |
Zephyranthes orellanae Carnevali, Duno & J.L.Tapia | ZEORE | 6 |
Zephyranthes primulina T.M.Howard & S.Ogden | ZEPRI | 1 |
Zephyranthes pulchella J.G.Sm. | ZEPUL | 2 |
Zephyranthes sessilis Herb. | ZESES | 51 |
Acronym | Description |
---|---|
BIO1 | Annual Mean Temperature (°C) |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp − min temp)) (°C) |
BIO3 | Isothermality (BIO2/BIO7) x 100) |
BIO4 | Temperature Seasonality (standard deviation * 100) |
BIO5 | Max Temperature of Warmest Month (°C) |
BIO6 | Min Temperature of Coldest Month (°C) |
BIO7 | Temperature Annual Range (BIO5-BIO6) |
BIO8 | Mean Temperature of Wettest Quarter (°C) |
BIO9 | Mean Temperature of Driest Quarter (°C) |
BIO10 | Mean Temperature of Warmest Quarter (°C) |
BIO11 | Mean Temperature of Coldest Quarter (°C) |
BIO12 | Annual Precipitation (mm) |
BIO13 | Precipitation of Wettest Month (mm) |
BIO14 | Precipitation of Driest Month (mm) |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
BIO16 | Precipitation of Wettest Quarter (mm) |
BIO17 | Precipitation of Driest Quarter (mm) |
BIO18 | Precipitation of Warmest Quarter (mm) |
BIO19 | Precipitation of Coldest Quarter (mm) |
SMCa | Calcium (cmol L−1) |
SMK | Potassium (cmol L−1) |
SMMg | Magnesium (cmol L−1) |
SMNa | Sodium (cmol L−1) |
SMCOrg | Organic Carbon (kg m−2) |
SMOM | Organic Matter (%) |
SMEC | Electric Conductivity (dS m−1) |
SMSAR | Sodium Absorption Radius (%) |
SMpH | Logarithmic Scale of Hydrogen Ion Concentration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Flores, Z.E.; Moredia Rosete, Y.; Ruiz Valencia, J.A.; Fernández Pavía, Y.L. Prediction of Environmentally Suitable Areas for Zephyranthes (Amaryllidaceae) in Mexico. Ecologies 2024, 5, 571-584. https://doi.org/10.3390/ecologies5040034
Rodríguez Flores ZE, Moredia Rosete Y, Ruiz Valencia JA, Fernández Pavía YL. Prediction of Environmentally Suitable Areas for Zephyranthes (Amaryllidaceae) in Mexico. Ecologies. 2024; 5(4):571-584. https://doi.org/10.3390/ecologies5040034
Chicago/Turabian StyleRodríguez Flores, Zayner Edin, Yanet Moredia Rosete, Jesús Alejandro Ruiz Valencia, and Yolanda Leticia Fernández Pavía. 2024. "Prediction of Environmentally Suitable Areas for Zephyranthes (Amaryllidaceae) in Mexico" Ecologies 5, no. 4: 571-584. https://doi.org/10.3390/ecologies5040034
APA StyleRodríguez Flores, Z. E., Moredia Rosete, Y., Ruiz Valencia, J. A., & Fernández Pavía, Y. L. (2024). Prediction of Environmentally Suitable Areas for Zephyranthes (Amaryllidaceae) in Mexico. Ecologies, 5(4), 571-584. https://doi.org/10.3390/ecologies5040034