Towed Video-Diver: A Useful Low-Cost Tool for Rapid Benthic Mapping and Biodiversity Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Sampling
2.2. Technic and Equipment Setup
2.3. Georeferencing Video Samples
2.4. Image Analysis
2.5. Mapping Production
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villnäs, A.; Norkko, A. Benthic diversity gradients and shifting baselines: Implications for assessing environmental status. Ecol. Appl. 2011, 21, 2172–2186. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.J.; Solan, M.; Valente, R.M. A review of approaches for classifying benthic habitats and evaluating habitat quality. J. Environ. Manag. 2004, 73, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Patrício, J.; Baeta, A.; Fath, B.D.; Neto, J.M.; Marques, J.C. Review and evaluation of estuarine biotic indices to assess benthic condition. Ecol. Indic. 2009, 9, 1–25. [Google Scholar] [CrossRef]
- Denisenko, S.; Grebmeier, J.; Cooper, L. Assessing bioresources and standing stock of zoobenthos (key species, high taxa, trophic groups) in the Chukchi Sea. Oceanography 2015, 28, 146–157. [Google Scholar] [CrossRef]
- Reiss, H.; Birchenough, S.; Borja, A.; Buhl-Mortensen, L.; Craeymeersch, J.; Dannheim, J.; Darr, A.; Galparsoro, I.; Gogina, M.; Neumann, H.; et al. Benthos distribution modelling and its relevance for marine ecosystem management. ICES J. Mar. Sci. 2015, 72, 297–315. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.; Lotze, H.K.; Micheli, F.; Palumbi, S.R. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Sturesson, A.; Weitz, N.; Persson, Å. SDG 14: Life Below Water. A Review of Research Needs; Technical annex to the Formas report Forskning för Agenda 2030: Översikt av forskningsbehov och vägar framåt; Stockholm Environment Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Ntona, M.; Morgera, E. Connecting SDG 14 with the other Sustainable Development Goals through marine spatial planning. Mar. Policy 2018, 93, 214–222. [Google Scholar] [CrossRef]
- Ryabinin, V.; Barbière, J.; Haugan, P.; Kullenberg, G.; Smith, N.; McLean, C.; Troisi, A.; Fischer, A.; Aricò, S.; Aarup, T. The UN decade of ocean science for sustainable development. Front. Mar. Sci. 2019, 6, 470. [Google Scholar] [CrossRef]
- Van Rein, H.; Brown, C.; Quinn, R.; Breen, J. A review of sublittoral monitoring methods in temperate waters: A focus on scale. Underw. Technol. 2009, 28, 99–113. [Google Scholar] [CrossRef]
- Miller, I.; Müller, R. Validity and reproducibility of benthic cover estimates made during broadscale surveys of coral reefs by manta tow. Coral Reefs 1999, 18, 353–356. [Google Scholar] [CrossRef]
- Coles, S.L.; Looker, E.; Burt, J.A. Twenty-year changes in coral near Muscat, Oman estimated from manta board tow observations. Mar. Environ. Res. 2015, 103, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Baker, V.J.; Bass, D.K.; Christie, C.A.; Johnson, D.B.; Miller, I.R.; Miller-Smith, B.A.; Moran, P.J.; Thompson, A.A. Manta Tow Surveys of the Great Barrier Reef. Coral Reefs 1990, 9, 104. [Google Scholar] [CrossRef]
- Miller, I.R.; Jonker, M.; Coleman, G. Crown-of-Thorns Starfish and Coral Surveys Using the Manta Tow and SCUBA Search Techniques, Long-term Monitoring of the Great Barrier Reef Standard Operation Procedure, 3rd ed.; Australian Institute of Marine Science: Townsville, Australia, 2009; ISBN 978-0-642-32259-3.
- Moran, P.; Johnson, D.; Miller-Smith, B.; Mundy, C.; Bass, D.; Davidson, J.; Miller, J.; Thompson, A. A guide to the Australian institute of marine science manta tow technique. In The crown-of-Thorns Study; Australian Institute of Marine Science: Townsville, Australia, 1989. [Google Scholar]
- Moran, P.; De’ath, G. Suitability of the manta tow technique for estimating relative and absolute abundances of crown-of-thorns starfish (Acanthaster planci L.) and corals. Mar. Freshw. Res. 1992, 43, 357–379. [Google Scholar] [CrossRef]
- Arafat, D.; Affandy, A.; Subhan, B.; Rikardi, N.; Madduppa, H.; Putra, E.R.; Santoso, P.; Setiawan, A.; Aprizan, M.; Zulfikar, R.; et al. Assessing coral reefs condition for rehabilitation site selection using diver-towed survey in an island of Anambas Islands. IOP Conf. Ser. Earth Environ. Sci. 2020, 429, 012011. [Google Scholar] [CrossRef]
- Kenyon, J.C.; Brainard, R.E.; Hoeke, R.K.; Parrish, F.A.; Wilkinson, C.B. Towed-Diver Surveys, a method for mesoscale spatial assessment of benthic reef habitat: A case study at Midway Atoll in the Hawaiian Archipelago. Coast. Manag. 2006, 34, 339–349. [Google Scholar] [CrossRef]
- Lino, K.; Asher, J.M.; Ferguson, M.; Gray, A.; McCoy, K.; Timmers, M.A.; Vargas-Ángel, B. Ecosystem Sciences Division Standard Operating Procedures: Data Collection for Towed-Diver Benthic and Fish Surveys; Administration Report H-18-02; Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA: Honolulu, HI, USA, 2018; p. 76.
- Richards, B.L.; Williams, I.D.; Nadon, M.O.; Zgliczynski, B.J. A towed-diver survey method for mesoscale fishery-independent assessment of large-bodied reef fishes. Bull. Mar. Sci. 2011, 87, 55–74. [Google Scholar] [CrossRef]
- Carleton, J.H.; Done, T.J. Quantitative video sampling of coral reef benthos: Large-scale application. Coral Reefs 1995, 14, 35–46. [Google Scholar] [CrossRef]
- Mohamed, H.; Nadaoka, K.; Nakamura, T. Automatic semantic segmentation of benthic habitats using images from towed underwater camera in a complex shallow water environment. Remote Sens. 2022, 14, 1818. [Google Scholar] [CrossRef]
- Costa, B.; Sweenet, E. Mendez Leveraging Artificial Intelligence to Annotate Marine Benthic Species and Habitats; NOAA Technical Memorandum NOS NCCOS 306: Silver Spring, MD, USA, 2022; p. 30.
- González-Rivero, M.; Beijbom, O.; Rodriguez-Ramirez, A.; Bryant, D.E.P.; Ganase, A.; Gonzalez-Marrero, Y.; Herrera-Reveles, A.; Kennedy, E.V.; Kim, C.J.S.; Lopez-Marcano, S.; et al. Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach. Remote Sens. 2020, 12, 489. [Google Scholar] [CrossRef]
- Bravo, G.; Livore, J.P.; Bigatti, G. Monitoring rocky reef biodiversity by underwater geo-referenced photoquadrats. Underw. Technol. 2021, 38, 17–24. [Google Scholar] [CrossRef]
- Bravo, G.; Livore, J.P.; Bigatti, G. The importance of surface orientation in biodiversity monitoring protocols: The case of patagonian rocky reefs. Front. Mar. Sci. 2020, 7, 578595. [Google Scholar] [CrossRef]
- Irigoyen, A.J.; Rojo, I.; Calò, A.; Trobbiani, G.; Sánchez-Carnero, N.; García-Charton, J.A. The “Tracked Roaming Transect” and distance sampling methods increase the efficiency of underwater visual censuses. PLoS ONE 2018, 13, e0190990. [Google Scholar] [CrossRef]
- Cumplido, M.; Trobbiani, G.; Carranza, A.; Bigatti, G. Limited gastropod abundances call for selective, small scale artisanal fisheries in a Patagonian marine protected area. Fish. Res. 2022, 250, 106291. [Google Scholar] [CrossRef]
- Bigatti, G.; Ciocco, N.F. Volutid snails as an alternative resource for artisanal fisheries in northern patagonic gulfs: Availability and first suggestions for diving catches. J. Shellfish Res. 2008, 27, 417–421. [Google Scholar] [CrossRef]
- Boraso de Zaixso, A.; Ciancia, M.; Cerezo, A.S. The seaweed resources of Argentina. In Seaweed Resources of the World; Critchley, A.T., Ohno, M., Eds.; International Cooperation Agency: Yokosuka, Japan, 1998; pp. 372–384. [Google Scholar]
- Raffo, M.P.; Dellatorre, F.; Ciancia, M. Seaweed resources of Argentina (S W Atlantic): Production, bio-ecological, applied research and challenges for sustainable development. Appl. Phycol. 2022, 3, 383–421. [Google Scholar] [CrossRef]
- Trobbiani, G.A.; Irigoyen, A.J. “Pepe”: A Novel Low Cost Drifting Video System for Underwater Survey. In Proceedings of the 2016 3rd IEEE/OES South American International Symposium on Oceanic Engineering (SAISOE), Buenos Aires, Argentina, 15–17 June 2016; pp. 1–4. [Google Scholar]
- Saracoglu, A.; Sanli, D.U. Effect of meteorological seasons on the accuracy of GPS positioning. Measurement 2020, 152, 107301. [Google Scholar] [CrossRef]
- Lisovski, S.; Hewson, C.M.; Klaassen, R.H.G.; Korner-Nievergelt, F.; Kristensen, M.W.; Hahn, S. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 2012, 3, 603–612. [Google Scholar] [CrossRef]
- Langenkämper, D.; Zurowietz, M.; Schoening, T.; Nattkemper, T.W. BIIGLE 2.0—Browsing and annotating large marine image collections. Front. Mar. Sci. 2017, 4, 83. [Google Scholar] [CrossRef]
- Stuart-Smith, R.; Ceccarelli, D.; Day, P.; Edgar, G.; Cooper, A.; Oh, E.; Mellin, C. Reef Life Survey Assessment of Marine Biodiversity in Geographe Bay; Reef Life Survey Foundation Incorporated: Hobart, Australia, 2020. [Google Scholar]
- Dickens, L.C.; Goatley, C.H.R.; Tanner, J.K.; Bellwood, D.R. Quantifying relative diver effects in underwater visual censuses. PLoS ONE 2011, 6, e18965. [Google Scholar] [CrossRef] [PubMed]
- Bravo, G.; Moity, N.; Londoño-Cruz, E.; Muller-Karger, F.; Bigatti, G.; Klein, E.; Choi, F.; Parmalee, L.; Helmuth, B.; Montes, E. Robots versus humans: Automated annotation accurately quantifies Essential Ocean Variables of rocky intertidal functional groups and habitat state. Front. Mar. Sci. 2021, 8, 691313. [Google Scholar] [CrossRef]
- James, L.; Marzloff, M.; Barrett, N.; Friedman, A.; Johnson, C. Changes in deep reef benthic community composition across a latitudinal and environmental gradient in temperate Eastern Australia. Mar. Ecol. Prog. Ser. 2017, 565, 35–52. [Google Scholar] [CrossRef]
- Monk, J.; Barrett, N.S.; Peel, D.; Lawrence, E.; Hill, N.A.; Lucieer, V.; Hayes, K.R. An evaluation of the error and uncertainty in epibenthos cover estimates from AUV images collected with an efficient, spatially-balanced design. PLoS ONE 2018, 13, e0203827. [Google Scholar] [CrossRef] [PubMed]
- Bass, D.K. Crown-of-Thorns Starfish and Coral Surveys Using the Manta-Tow and SCUBA Search Techniques; Long-Term Monitoring of the Great Barrier Reef Standard Operational Procedure; Australian Institute of Marine Science: Townsville, Australia, 1996; ISBN 0 642 25986 0.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Longley, P. Geographical Information Systems: A renaissance of geodemographics for public service delivery. Prog. Hum. Geogr. 2005, 29, 57–63. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef]
- Boraso de Zaixso, A.L. The Population of Gracilaria Verrucosa (Hudson) Papenfuss in Arredondo Bay (Chubut, Argentina). Nat. Patagónica Cienc. Biológicas 1995, 3, 85–106. [Google Scholar]
- Trobbiani, G.A.; Irigoyen, A.; Venerus, L.A.; Fiorda, P.M.; Parma, A.M. A low-cost towed video camera system for underwater surveys: Comparative performance with standard methodology. Environ. Monit. Assess. 2018, 190, 683. [Google Scholar] [CrossRef] [PubMed]
- Beisiegel, K.; Darr, A.; Zettler, M.L.; Friedland, R.; Gräwe, U.; Gogina, M. Understanding the spatial distribution of subtidal reef assemblages in the southern Baltic Sea using towed camera platform imagery. Estuar. Coast. Shelf Sci. 2018, 207, 82–92. [Google Scholar] [CrossRef]
- Trobbiani, G.; Getino Mamet, L.; Irigoyen, A.J.; Parma, A.M. “Toki”, a light low-cost video system for seabed research: Performance and precision of Tehuelche scallop (Aequipecten tehuelchus) survey estimates in San José Gulf, Argentina. Fish. Res. 2025, 281, 107248. [Google Scholar] [CrossRef]
- Sakagami, N.; Hirayama, K.; Taba, R.; Kobashigawa, S.; Arashiro, S.; Takemura, F.; Takahashi, S. Development and field experiments of a human-portable towed ROV for high-speed and wide area data acquisition. Artif. Life Robot. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Zabala, S.; Bigatti, G.; Botto, F.; Iribarne, O.O.; Galván, D.E. Trophic relationships between a Patagonian gastropod and its epibiotic anemone revealed by using stable isotopes and direct observations. Mar. Biol. 2013, 160, 909–919. [Google Scholar] [CrossRef]
- Márquez, F.; Zabala, S.; Bökenhans, V.; Cumplido, M.; Espinosa, F.; Bigatti, G.; Averbuj, A. Predation of the invasive green crab Carcinus maenas on the edible snail Buccinastrum deforme, targeted as the most important nearshore marine gastropod fishery from Patagonia, Argentina. Reg. Stud. Mar. Sci. 2024, 69, 103299. [Google Scholar] [CrossRef]
- Cordone, G.; Galván, D.E.; Momo, F.R. Impacts of an invasion by green crab Carcinus maenas on the intertidal food web of a Patagonian rocky shore, Argentina. Mar. Ecol. Prog. Ser. 2023, 713, 97–115. [Google Scholar] [CrossRef]
- Battini, N.; Bravo, G. Unexpected meal: First record of predation upon a potentially neurotoxic sea slug by the European green crab Carcinus maenas. N. Z. J. Zool. 2021, 48, 166–173. [Google Scholar] [CrossRef]
- Malvé, M.E.; Battini, N.; Cordone, G.; Cortés, J.I.; Galván, D.E.; Livore, J.P.; Suárez, N.; Yorio, P.; Schwindt, E.; Mendez, M.M. Potential impacts and priority areas of research of the on-going invasion of green crabs along the SW Atlantic. Environ. Rev. 2024, 33, 1–19. [Google Scholar] [CrossRef]
- Althaus, F.; Hill, N.; Ferrari, R.; Edwards, L.; Przeslawski, R.; Schönberg, C.H.L.; Stuart-Smith, R.; Barrett, N.; Edgar, G.; Colquhoun, J.; et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI Classification Scheme. PLoS ONE 2015, 10, e0141039. [Google Scholar] [CrossRef] [PubMed]
- Mora-Soto, A.; Palacios, M.; Macaya, E.C.; Gómez, I.; Huovinen, P.; Pérez-Matus, A.; Young, M.; Golding, N.; Toro, M.; Yaqub, M. A high-resolution global map of Giant kelp (Macrocystis pyrifera) forests and intertidal green algae (Ulvophyceae) with Sentinel-2 imagery. Remote Sens. 2020, 12, 694. [Google Scholar] [CrossRef]
- Barrales, H.L.; Lobban, C.S. The comparative ecology of Macrocystis Pyrifera, with emphasis on the forests of Chubut, Argentina. J. Ecol. 1975, 63, 657. [Google Scholar] [CrossRef]
- Dellatorre, F.; Amoroso, R.; Saravia, J.; Orensanz, L. Rapid expansion and potential range of the invasive kelp Undaria pinnatifida in the Southwest Atlantic. AI 2014, 9, 467–478. [Google Scholar] [CrossRef]
- Dellatorre, F.G.; Amoroso, R.O.; Baron, P.J. El Alga Exótica Undaria Pinnatifida en Argentina: Biología, Distribución y Potenciales Impactos; Editorial Académica Española: London, UK, 2012; ISBN 3-8484-5727-X. [Google Scholar]
- Bunicontro, M.P.; Marcomini, S.C.; Casas, G.N. Environmental Impacts of an Alien Kelp Species (Undaria pinnatifida, Laminariales) Along the Patagonian Coasts. In Impacts of Invasive Species on Coastal Environments; Makowski, C., Finkl, C.W., Eds.; Coastal Research Library; Springer International Publishing: Cham, Switzerland, 2019; Volume 29, pp. 373–396. ISBN 978-3-319-91381-0. [Google Scholar]
- Boraso De Zaixso, A.L. Gracilaria verrucosa in Golfo Nuevo, Chubut, Argentina. Biological parameters and environmental factors. Hydrobiologia 1987, 151–152, 239–244. [Google Scholar] [CrossRef]
- Boraso de Zaixso, A.L.; Kreibohw de Paternoster, I.C. Demografía, Reproducción y Propagación en Poblaciones de Gracilaria verrucosa (Hudson) Papenfuss de la Provincia de Chubut (Rep. Argentina). I. Golfo Nuevo; Centro Nacional Patagónico-CONICET: Puerto Madryn, Argentina, 1984; p. 26.
- Mayer, A.M. Studies on Gracilaria sp. in Bahia Arredondo, Chubut Province, Argentina. Proc. Int. Seaweed Symp. 1981, 10, 705–710. [Google Scholar]
- Martín, L.A.; Boraso De Zaixso, A.L.; Leonardi, P.I. Biomass variation and reproductive phenology of Gracilaria gracilis in a Patagonian natural bed (Chubut, Argentina). J. Appl. Phycol. 2011, 23, 643–654. [Google Scholar] [CrossRef]
- Bravo, G.; Bigatti, G.; Bagur, M.; Macaya, E.; Valdivia, N.; Rodriguez, A.; Gauna, M.; Walker, I.; Livore, J.P.; Mendez, M.; et al. Implementing biodiversity monitoring of rocky shores using photo-quadrats and artificial intelligence in support of data-driven decision-making of marine living resources. RIO 2024, 10, e126660. [Google Scholar] [CrossRef]
- Ditria, E.M.; Buelow, C.A.; Gonzalez-Rivero, M.; Connolly, R.M. Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective. Front. Mar. Sci. 2022, 9, 918104. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, Z. The Role of Artificial Intelligence Algorithms in Marine Scientific Research. Front. Mar. Sci. 2022, 9, 920994. [Google Scholar] [CrossRef]
- Isabelle, D.A.; Westerlund, M. A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability 2022, 14, 1979. [Google Scholar] [CrossRef]
Category | Cover Estimate |
---|---|
0 | 0 |
1 | >0–10% |
2 | 11–30% |
3 | 31–50% |
4 | 51–75% |
5 | 76–100% |
Density (inv/1000 m2) | |||||
---|---|---|---|---|---|
CATAMI Group | CATAMI Name | TAXA | Unconsolidated | Rock | Overall |
Ascidians | Unstalked: Colonial | Polyzoa opuntia | 0.5 | 48.04 | 8.16 |
Ascidians | Unstalked: Solitary | Phlebobranchia | 0.08 | 0.43 | 0.14 |
Cnidaria | True anemones (associated with gastropods) | Antholoba achates /Adelomelon ancilla | 0.91 | 0 | 0.77 |
Cnidaria | True anemones | Metridium sp. | 0.5 | 7.79 | 1.67 |
Crustacea | Crabs | Carcinus maenas | 1.66 | 4.76 | 2.16 |
Crustacea | Crabs | Leucippa pentagona | 0.42 | 13.85 | 2.58 |
Crustacea | Crabs | Leurocyclus tuberculosus | 9.56 | 0.43 | 8.09 |
Crustacea | Crabs | Ovalipes trimaculatus | 0.08 | 0 | 0.07 |
Crustacea | Crabs | Peltarion spinulosum | 0.25 | 0.87 | 0.35 |
Echinoderms | Sea cucumbers | Cucumariidae | 0.08 | 0 | 0.07 |
Echinoderms | Sea stars | Allostichaster capensis | 0.08 | 3.03 | 0.56 |
Echinoderms | Sea stars | Anasterias antarctica | 0.33 | 8.66 | 1.67 |
Echinoderms | Sea stars | Cosmasterias lurida | 0 | 0.87 | 0.14 |
Fishes | Bony fishes | Patagonotothen sp. | Present | Present | |
Fishes | Bony fishes | Sebastes oculatus | 0 | 1.3 | 0.21 |
Macroalgae | Erect coarse branching: green | Codium sp. | Present | ||
Macroalgae | Erect fine branching | Gracilaria sp. | Present | Present | |
Macroalgae | Filamentous/filiform: red | Rhodophyta | Present | ||
Macroalgae | Filamentous/filiform: green | Chlorophyta | Present | ||
Macroalgae | Large canopy-forming | Macrocystis pyrifera | 0 | 29.0 | 4.95 |
Macroalgae | Large canopy-forming | Undaria pinnatifida | 1.33 | 45.01 | 8.37 |
Macroalgae | Sheet-like/membraneous: brown | Dictyota dichotoma | Present | ||
Macroalgae | Sheet-like/membraneous: green | Ulva sp. | Present | ||
Molluscs | Bivalves | Mytilida | Present | ||
Molluscs | Gastropods | Odontocymbiola magellanica | 0.42 | 0 | 0.35 |
Sponges | Crusts: encrusting | Demospongiae | 0.08 | 2.6 | 0.49 |
Sponges | Massive forms: simple | Demospongiae | 0 | 0.43 | 0.07 |
Worms | Polychaetes | Aphrodita sp. | 0 | 0.87 | 0.14 |
Anthropogenic object | Present | Present | |||
Bedforms | 2D: Ripples (<10 cm height) | ||||
Bedforms | 2D: Waves (>10 cm height) | ||||
Substrate 1 | Unconsolidated (soft): fine sand (no shell fragments) | ||||
Substrate 2 | Unconsolidated (soft): coarse sand (with shell fragments) | ||||
Substrate 3 | Unconsolidated (soft): gravel (2–10 mm) | ||||
Substrate 4 | Consolidated (hard): rock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, G.; Trobbiani, G.A.; Bigatti, G.; Beltramino, L.E.; Irigoyen, A.J. Towed Video-Diver: A Useful Low-Cost Tool for Rapid Benthic Mapping and Biodiversity Monitoring. Ecologies 2025, 6, 10. https://doi.org/10.3390/ecologies6010010
Bravo G, Trobbiani GA, Bigatti G, Beltramino LE, Irigoyen AJ. Towed Video-Diver: A Useful Low-Cost Tool for Rapid Benthic Mapping and Biodiversity Monitoring. Ecologies. 2025; 6(1):10. https://doi.org/10.3390/ecologies6010010
Chicago/Turabian StyleBravo, Gonzalo, Gaston A. Trobbiani, Gregorio Bigatti, Lucas E. Beltramino, and Alejo J. Irigoyen. 2025. "Towed Video-Diver: A Useful Low-Cost Tool for Rapid Benthic Mapping and Biodiversity Monitoring" Ecologies 6, no. 1: 10. https://doi.org/10.3390/ecologies6010010
APA StyleBravo, G., Trobbiani, G. A., Bigatti, G., Beltramino, L. E., & Irigoyen, A. J. (2025). Towed Video-Diver: A Useful Low-Cost Tool for Rapid Benthic Mapping and Biodiversity Monitoring. Ecologies, 6(1), 10. https://doi.org/10.3390/ecologies6010010