Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review
Abstract
:1. Introduction
Type | Costs | Remarks |
---|---|---|
Dark Fermentation | From 0.17 $/m3 to 0.23 $/m3 | Cheap but low rate ability per year |
Hydrogenotrophic anaerobic digestion | From 0.16 $/m3 to 0.231 $/m3 | Most produced hydrogen is used for improving methane yield; the hydrogen produced has lower concentration and is more unstable than in dark fermentation |
MEC | From 0.74 $/m3 to 1 $/m3 | Suitable for ammonia and urine wastes that need voltage low enough to split compounds without extra energy coming from fossil sources |
Algaes | From 2.6 $/m3 to 3.68 $/m3 | Sensitive, large area. Expensive in comparison to other methods. By-products could be used in cosmetics |
Pyrolysis | From 1.25 $/m3 to 2.2 $/m3 | The versatility of waste reduced emissions in comparison to gasification, possibility of production of smart polymers |
Gasification | 1.65 $/m3 | Versatility of waste but high emission of toxic oxides |
SNG | 0.67 $/m3 | From fossil fuels |
2. Materials and Methods
3. Results and Discussion
3.1. Review of Pollution Risk of Tire and Plastic Waste Pyrolysis
3.2. Reactors Used in Pyrolysis of Plastic and Tires
3.3. Process Conditions
3.4. Advantages and Disadvantages of Pyrolysis
3.5. Plastic Waste and Tire Life Cycle
4. Future of Pyrolysis Processes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation List
PET | polyethylene terephthalate |
HDPE | high-density polyethylene |
LLDPE | linear low-density polyethylene |
LDPE | low-density polyethylene |
PVC | polyvinyl chloride |
PU | polyurethane |
PA | polyamides |
PS | polystyrene |
PP | polypropylene |
ABS | acrylonitrile butadiene styrene |
HIPS | high-impact polystyrene |
SNG | substitute natural gas |
BTX | benzene, toluene, xylene |
HRT | hydraulic retention time |
ZSM-5 catalyst | Zeolite Socony Mobil-5 |
EHF | endothermic hydrocarbon fuel |
SBR | styrene–butadiene rubber |
References
- Gandhi, N.; Farfaras, N.; Wang, N.-H.L.; Chen, W.-T. Life Cycle Assessment of Recycling High-Density Polyethylene Plastic Waste. J. Renew. Mater. 2021, 9, 1464–1481. [Google Scholar] [CrossRef]
- Oni, B.A.; Sanni, S.E.; Olabode, O.S. Production of fuel-blends from waste tyre and plastic by catalytic and integrated pyrolysis for use in compression ignition (CI) engines. Fuel 2021, 297, 120801. [Google Scholar] [CrossRef]
- Wang, C.; Lei, H.; Kong, X.; Zou, R.; Qian, M.; Zhao, Y.; Mateo, W. Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels. Sci. Total Environ. 2021, 779, 146463. [Google Scholar] [CrossRef]
- Elgie, A.R.; Singh, S.J.; Telesford, J.N. You can’t manage what you can’t measure: The potential for circularity in Grenada’s waste management system. Resour. Conserv. Recycl. 2021, 164, 105170. [Google Scholar] [CrossRef]
- Martínez, J.D. An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renew. Sustain. Energy Rev. 2021, 144, 111032. [Google Scholar] [CrossRef]
- Phakedi, D.; Ude, A.U.; Oladijo, P.O. Co-pyrolysis of polymer waste and carbon-based matter as an alternative for waste management in the developing world. J. Anal. Appl. Pyrolysis 2021, 155, 105077. [Google Scholar] [CrossRef]
- Sharma, K. Carbohydrate-to-hydrogen production technologies: A mini-review. Renew. Sustain. Energy Rev. 2019, 105, 138–143. [Google Scholar] [CrossRef]
- The History and Future of Plastics What Are Plastics, and Where Do They Come From? Available online: https://www.sciencehistory.org/the-history-and-future-of-plastics (accessed on 5 July 2021).
- Pandey, S.; Karakoti, M.; Surana, K.; Dhapola, P.S.; Santhi Bhushan, B.; Ganguly, S.; Singh, P.K.; Abbas, A.; Srivastava, A.; Sahoo, N.G. Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Sci. Rep. 2021, 11, 3916. [Google Scholar] [CrossRef]
- Bailey, J. Advances in Forms of Transport—Steam Locomotives, Cycle Tyres, Oceanic Liners, and Jet Aircraft. Transport Infrastructure—Canals, Roads, and Commercial Railways. In Inventive Geniuses Who Changed the World; Springer: Cham, Switzerland, 2021; pp. 37–105. ISBN 978-3-030-81381-9. [Google Scholar]
- Guan, J.; Sun, Z.; Ansari, R.; Liu, Y.; Endo, A.; Unno, M.; Ouali, A.; Mahbub, S.; Furgal, J.C.; Yodsin, N.; et al. Conjugated Copolymers That Shouldn’t Be. Angew. Chem. Int. Ed. 2021, 60, 11115–11119. [Google Scholar] [CrossRef] [PubMed]
- Mark, L.O.; Cendejas, M.C.; Hermans, I. The Use of Heterogeneous Catalysis in the Chemical Valorization of Plastic Waste. ChemSusChem 2020, 13, 5808–5836. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Ke, L.; Dai, L.; Wu, Q.; Cobb, K.; Zeng, Y.; Zou, R.; Liu, Y.; Ruan, R. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Convers. Manag. 2022, 254, 115243. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Antoniadis, V.; Shahid, M.; Yang, Y.; Abdelrahman, H.; Zhang, T.; Hassan, N.E.E.; Bibi, I.; Niazi, N.K.; Younis, S.A.; et al. Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renew. Sustain. Energy Rev. 2022, 153, 111791. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Czajka, K.; Krzyżyńska, R.; Jouhara, H. Waste tyre pyrolysis – Impact of the process and its products on the environment. Therm. Sci. Eng. Prog. 2020, 20, 100690. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste tyre valorization by catalytic pyrolysis—A review. Renew. Sustain. Energy Rev. 2020, 129, 109932. [Google Scholar] [CrossRef]
- Rollinson, A.N.; Oladejo, J.M. ‘Patented blunderings’, efficiency awareness, and self-sustainability claims in the pyrolysis energy from waste sector. Resour. Conserv. Recycl. 2019, 141, 233–242. [Google Scholar] [CrossRef]
- Ryu, H.W.; Kim, D.H.; Jae, J.; Lam, S.S.; Park, E.D.; Park, Y.-K. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresour. Technol. 2020, 310, 123473. [Google Scholar] [CrossRef]
- Gala, A.; Guerrero, M.; Serra, J.M. Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Manag. 2020, 111, 22–33. [Google Scholar] [CrossRef]
- Amar Gil, S.; Ardila Arias, A.N.; Barrera Zapata, R. Simulation and obtaining of synthetic fuels from the pyrolysis of plastic wastes. Ing. y Desarro. 2020, 37, 306–326. [Google Scholar] [CrossRef]
- Zhou, N.; Dai, L.; Lyu, Y.; Li, H.; Deng, W.; Guo, F.; Chen, P.; Lei, H.; Ruan, R. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem. Eng. J. 2021, 418, 129412. [Google Scholar] [CrossRef]
- Grams, J.; Ruppert, A.M. Catalyst Stability—Bottleneck of Efficient Catalytic Pyrolysis. Catalysts 2021, 11, 265. [Google Scholar] [CrossRef]
- Holubčík, M.; Klačková, I.; Ďurčanský, P. Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic. Energies 2020, 13, 4849. [Google Scholar] [CrossRef]
- Ahamed, A.; Liang, L.; Chan, W.P.; Tan, P.C.K.; Yip, N.T.X.; Bobacka, J.; Veksha, A.; Yin, K.; Lisak, G. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes. Environ. Pollut. 2021, 276, 116681. [Google Scholar] [CrossRef]
- Djandja, O.S.; Wang, Z.; Duan, P.; Wang, F.; Xu, Y. Hydrotreatment of pyrolysis oil from waste tire in tetralin for production of high-quality hydrocarbon rich fuel. Fuel 2021, 285, 18–24. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, G.; Zhang, Q.; Li, Z.; Zhang, S.; Cui, W. Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas. Fuel 2021, 285, 119221. [Google Scholar] [CrossRef]
- Sugiarto, B.; Kurniawan, A.; Perdana, A. Plastic waste conversion into fuel by utilizing biomass waste as heating system on pyrolysis process. J. Physics Conf. Ser. 2020, 1517, 012010. [Google Scholar] [CrossRef]
- Banu, J.R.; Ginni, G.; Kavitha, S.; Kannah, R.Y.; Kumar, S.A.; Bhatia, S.K.; Kumar, G. Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresour. Technol. 2021, 319, 124241. [Google Scholar] [CrossRef]
- Domrongpokkaphan, V.; Phalakornkule, C.; Khemkhao, M. In-situ methane enrichment of biogas from anaerobic digestion of palm oil mill effluent by addition of zero valent iron (ZVI). Int. J. Hydrogen Energy 2021, 46, 30976–30987. [Google Scholar] [CrossRef]
- Müller, T.K.H.; Franzreb, M. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions. J. Chromatogr. A 2012, 1260, 88–96. [Google Scholar] [CrossRef]
- Atasoy, M.; Cetecioglu, Z. Butyric acid dominant volatile fatty acids production: Bio-augmentation of mixed culture fermentation by Clostridium butyricum. J. Environ. Chem. Eng. 2020, 8, 104496. [Google Scholar] [CrossRef]
- Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy Fuels 2021, 35, 3529–3557. [Google Scholar] [CrossRef] [PubMed]
- Belete, Y.Z.; Mau, V.; Spitzer, R.Y.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J.W.; Gross, A. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Bioresour. Technol. 2021, 333, 125164. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour. Technol. 2021, 320, 124278. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Gouveia, L.; Marques, P.A. Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes–Effect of operational conditions and fermentation kinetics. Renew. Energy 2018, 119, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Meneses, Y.E.; Stratton, J.; Lau, S.K.; Subbiah, J. Integration of ozone with co-immobilized microalgae-activated sludge bacterial symbiosis for efficient on-site treatment of meat processing wastewater. J. Environ. Manag. 2021, 285, 112152. [Google Scholar] [CrossRef]
- Sołowski, G. Bioprocessing and Biotechniques Biohydrogen Production-Sources and Methods: A Review. Int. J. Bioprocess. Biotech. 2018, 2018, 100001. [Google Scholar] [CrossRef]
- Georg, S.; Schott, C.; Capitao, J.C.; Sleutels, T.; Kuntke, P.; ter Heijne, A.; Buisman, C. Bio-electrochemical degradability of prospective wastewaters to determine their ammonium recovery potential. Sustain. Energy Technol. Assess. 2021, 47, 101423. [Google Scholar] [CrossRef]
- Rodrigues, M.; Paradkar, A.; Sleutels, T.; Heijne, A.; Buisman, C.J.N.; Hamelers, H.V.M.; Kuntke, P.; Rodrigues, M.; Paradkar, A.; Sleutels, T.; et al. Donnan Dialysis for scaling mitigation during electrochemical ammonium recovery from complex wastewater. Water Res. 2021, 201, 117260. [Google Scholar] [CrossRef]
- Wallman, P.H.; Thorsness, C.B.; Winter, J.D. Hydrogen production from wastes. Energy 1998, 23, 271–278. [Google Scholar] [CrossRef]
- Wodołażski, A.; Smoliński, A. Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling. Processes 2022, 10, 1907. [Google Scholar] [CrossRef]
- Li, D.; Lei, S.; Rajput, G.; Zhong, L.; Ma, W.; Chen, G. Study on the co-pyrolysis of waste tires and plastics. Energy 2021, 226, 120381. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Kee, S.H.; Foong, S.Y.; Amelia, T.S.M.; Bhubalan, K.; Man, M.; Yang, Y.F.; Ong, H.C.; Vithanage, M.; Lam, S.S.; et al. Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renew. Sustain. Energy Rev. 2022, 153, 111790. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Singhal, A.; Tolvanen, H.; Valtonen, K.; Joronen, T.; Konttinen, J. Effect of pretreatment and biomass blending on bio-oil and biochar quality from two-step slow pyrolysis of rice straw. Waste Manag. 2022, 138, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Mumbach, G.D.; Alves, J.L.F.; da Silva, J.C.G.; Di Domenico, M.; Arias, S.; Pacheco, J.G.A.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renew. Sustain. Energy Rev. 2022, 153, 111753. [Google Scholar] [CrossRef]
- Race, M.; Spasiano, D.; Luongo, V.; Petrella, A.; Fiore, S.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. Simultaneous treatment of agro-food and asbestos-cement waste by the combination of dark fermentation and hydrothermal processes. Int. Biodeterior. Biodegrad. 2019, 144, 104766. [Google Scholar] [CrossRef]
- Sołowski, G.; Ziminski, T.; Cenian, A. A shift from anaerobic digestion to dark fermentation in glycol ethylene fermentation. Environ. Sci. Pollut. Res. 2021, 28, 15556–15564. [Google Scholar] [CrossRef] [PubMed]
- Qi, K.; Li, Z.; Zhang, C.; Tan, X.; Wan, C.; Liu, X.; Wang, L.; Lee, D.-J. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: Performance and resistance mechanism. Biochem. Eng. J. 2020, 161, 107711. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Thermochemical conversion of plastic waste to fuels: A review. Environ. Chem. Lett. 2020, 19, 123–148. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Kavitha, S.; Preethi; Karthikeyan, O.P.; Kumar, G.; Dai-Viet, N.V.; Banu, J.R. Techno-economic assessment of various hydrogen production methods–A review. Bioresour. Technol. 2021, 319, 124175. [Google Scholar] [CrossRef]
- Lewandowski, W.M.; Ryms, M.; Kosakowski, W. Thermal Biomass Conversion: A Review. Processes 2020, 8, 516. [Google Scholar] [CrossRef]
- Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review. J. Anal. Appl. Pyrolysis 2019, 140, 25–53. [Google Scholar] [CrossRef]
- Shah, S.S.A.; De Simone, L.; Bruno, G.; Park, H.; Lee, K.; Fabbricino, M.; Angelidaki, I.; Choo, K.-H. Quorum quenching, biological characteristics, and microbial community dynamics as key factors for combating fouling of membrane bioreactors. npj Clean Water 2021, 4, 19. [Google Scholar] [CrossRef]
- Gallipoli, A.; Braguglia, C.M.; Gianico, A.; Montecchio, D.; Pagliaccia, P. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci. 2020, 89, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; AlNouss, A.; Mckay, G.; Mackey, H.; Ansari, T.-A. Techno-economic and environmental analysis of pyrolysis process simulation for plastic (PET) waste. In 32 European Symposium on Computer Aided Process Engineering; Montastruc, L., Negny, S.B.T.-C.A.C.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 51, pp. 115–120. ISBN 1570-7946. [Google Scholar]
- Ye, H.; Wang, T.; Liu, S.; Zhang, C.; Cai, Y. Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production. Catalysts 2022, 12, 211. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Ma, Z.; Quan, C. Investigation of product distribution from co-pyrolysis of side wall waste tire and off-shore oil sludge. Fuel 2021, 285, 119036. [Google Scholar] [CrossRef]
- Sangkham, S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2020, 2, 100052. [Google Scholar] [CrossRef]
- Behera, A. Ultralight Materials. In Advanced Materials: An Introduction to Modern Materials Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 395–438. ISBN 978-3-030-80359-9. [Google Scholar]
- Takayama, Y.; Masuzaki, Y.; Mizutani, F.; Iwata, T.; Maeda, E.; Tsukada, M.; Nomura, K.; Ito, Y.; Chisaki, Y.; Murata, K. Associations between blood arsenic and urinary arsenic species concentrations as an exposure characterization tool. Sci. Total Environ. 2021, 750, 141517. [Google Scholar] [CrossRef]
- Lee, N.-W.; Wang, H.-Y.; Du, C.-L.; Yuan, T.-H.; Chen, C.-Y.; Yu, C.-J.; Chan, C.-C. Air-polluted environmental heavy metal exposure increase lung cancer incidence and mortality: A population-based longitudinal cohort study. Sci. Total Environ. 2022, 810, 152186. [Google Scholar] [CrossRef]
- Kusenberg, M.; Zayoud, A.; Roosen, M.; Thi, H.D.; Abbas-Abadi, M.S.; Eschenbacher, A.; Kresovic, U.; De Meester, S.; Van Geem, K.M. A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Process. Technol. 2022, 227, 107090. [Google Scholar] [CrossRef]
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Origins and carriers of Sb, As, Cd, Cl, Cr, Co, Pb, Hg, and Ni in mixed solid waste–A literature-based evaluation. Waste Manag. 2020, 103, 87–112. [Google Scholar] [CrossRef]
- Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T.F. Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Manag. 2016, 49, 3–14. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Khapre, A.; Saikia, P.; Shukla, S.K.; Kumar, S. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. J. Water Process Eng. 2020, 33, 101095. [Google Scholar] [CrossRef]
- Luo, Q.; Cheng, L.; Zhang, M.; Mao, Y.; Hou, Y.; Qin, W.; Dai, J.; Liu, Y. Comparison and characterization of polyacrylonitrile, polyvinylidene fluoride, and polyvinyl chloride composites functionalized with ferric hydroxide for removing arsenic from water. Environ. Technol. Innov. 2021, 24, 101927. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ. 2022, 803, 149911. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Piñar, A.; Ligero, A.; Blázquez, G.; Calero, M. Characterization and Use of Char Produced from Pyrolysis of Post-Consumer Mixed Plastic Waste. Water 2021, 13, 1188. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, P.; Wang, Z.; Wang, J.; Ding, J.; Dewil, R.; Van der Bruggen, B. Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions. Chemosphere 2021, 263, 127993. [Google Scholar] [CrossRef]
- Pourhashem, G.; Spatari, S.; Boateng, A.A.; McAloon, A.J.; Mullen, C.A. Life Cycle Environmental and Economic Tradeoffs of Using Fast Pyrolysis Products for Power Generation. Energy Fuels 2013, 27, 2578–2587. [Google Scholar] [CrossRef]
- Doja, S.; Pillari, L.K.; Bichler, L. Processing and activation of tire-derived char: A review. Renew. Sustain. Energy Rev. 2022, 155, 111860. [Google Scholar] [CrossRef]
- Lyashenko, I.A.; Popov, V.L. Hysteresis in an Adhesive Contact upon a Change in the Indenter Direction of Motion: An Experiment and Phenomenological Model. Tech. Phys. 2021, 66, 672–690. [Google Scholar] [CrossRef]
- Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. [Google Scholar] [CrossRef]
- Lekkas, C.; Stewart, G.G.; Hill, A.E.; Taidi, B.; Hodgson, J. Elucidation of the Role of Nitrogenous Wort Components in Yeast Fermentation. J. Inst. Brew. 2007, 113, 3–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Nahil, M.A.; Wu, C.; Williams, P.T. Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products. Environ. Technol. 2017, 38, 2889–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, J.; Hu, X.; Kong, L.; Wang, N.; Zhang, S.; He, M.; Ouyang, W.; Liu, X.; Lin, C. Dynamic flow and pollution of antimony from polyethylene terephthalate (PET) fibers in China. Sci. Total. Environ. 2021, 771, 144643. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zeng, X.; Wang, F.; Adamu, M.H.; Xu, G. Comparison of tar thermal cracking and catalytic reforming by char in a micro fluidized bed reaction analyzer. Fuel 2021, 290, 120038. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kaur, T.; Devi, R.; Kour, D.; Yadav, A.; Yadav, P.K.; Zameer, F.; Diklitas, M.; Abdel-Azem, A.M.; Ahluwalia, A.S. Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. In Recent Trends in Mycological Research, Fungal Biology; Yadav, A.N., Ed.; Springer Nature Switzerland AG: Basel, Switzerland, 2021; pp. 497–517. ISBN 9783030682606. [Google Scholar]
- Fekhar, B.; Zsinka, V.; Miskolczi, N. Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement. J. Environ. Manag. 2020, 269, 110741. [Google Scholar] [CrossRef] [PubMed]
- Gałko, G.; Rejdak, M.; Tercki, D.; Bogacka, M.; Sajdak, M. Evaluation of the applicability of polymeric materials to BTEX and fine product transformation by catalytic and non-catalytic pyrolysis as a part of the closed loop material economy. J. Anal. Appl. Pyrolysis 2021, 154, 105017. [Google Scholar] [CrossRef]
- Jung, J.-M.; Lee, T.; Jung, S.; Tsang, Y.F.; Bhatnagar, A.; Lee, S.S.; Song, H.; Park, W.-K.; Kwon, E.E. Control of the fate of toxic pollutants from catalytic pyrolysis of polyurethane by oxidation using CO2. Chem. Eng. J. 2022, 442, 136358. [Google Scholar] [CrossRef]
- Xu, X.; Leng, Z.; Lan, J.; Wang, W.; Yu, J.; Bai, Y.; Sreeram, A.; Hu, J. Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering 2021, 7, 857–867. [Google Scholar] [CrossRef]
- Campuzano, F.; Jameel, A.G.A.; Zhang, W.; Emwas, A.-H.; Agudelo, A.F.; Martínez, J.D.; Sarathy, S.M. On the distillation of waste tire pyrolysis oil: A structural characterization of the derived fractions. Fuel 2021, 290, 120041. [Google Scholar] [CrossRef]
- Dick, D.T.; Agboola, O.; Ayeni, A.O. Pyrolysis of waste tyre for high-quality fuel products: A review. AIMS Energy 2020, 8, 869–895. [Google Scholar] [CrossRef]
- Ariri, A.; Alva, S.; Hasbullah, S.A. Tire Waste As a Potential Material for Carbon Electrode Fabrication: A Review. Sinergi 2020, 25, 1–10. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Kosakowski, W.; Lewandowski, W.M. Waste Tyres Pyrolysis for Obtaining Limonene. Materials 2020, 13, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rex, P.; Masilamani, I.P.; Miranda, L.R. Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. J. Energy Inst. 2020, 93, 1819–1832. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, B.; Li, C.; Xu, T.; Fu, J.; Ma, C.; Song, Z. Preparation of powdered activated coke for SO2 removal using different coals through a one-step method under high-temperature flue gas atmosphere. J. Anal. Appl. Pyrolysis 2021, 153, 104989. [Google Scholar] [CrossRef]
- Ding, K.; Liu, S.; Huang, Y.; Liu, S.; Zhou, N.; Peng, P.; Wang, Y.; Chen, P.; Ruan, R. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manag. 2019, 196, 1316–1325. [Google Scholar] [CrossRef]
- Sholokhova, A.Y.; Shashkov, M.V.; Patrushev, Y.V.; Matyushin, D.D.; Zhdanov, A.A.; Dolgushev, P.A.; Buryak, A.K. Comprehensive Analysis of the Liquid Fraction of Car Tire Pyrolysis Products by Gas Chromatography–Mass Spectrometry. Russ. J. Appl. Chem. 2021, 94, 122–128. [Google Scholar] [CrossRef]
- Budsaereechai, S.; Hunt, A.J.; Ngernyen, Y. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Adv. 2019, 9, 5844–5857. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Zhang, J.; Pan, M.; Lin, Q.; Khan, M.B.; Yang, X.; He, Z.; Yan, B.; Chen, G. Double-edged effects of polyvinyl chloride addition on heavy metal separation and biochar production during pyrolysis of Cd/Zn hyperaccumulator. J. Hazard. Mater. 2021, 416, 125793. [Google Scholar] [CrossRef]
- Wiriyaumpaiwong, S.; Jamradloedluk, J. Distillation of Pyrolytic Oil Obtained from Fast Pyrolysis of Plastic Wastes. Energy Procedia 2017, 138, 111–115. [Google Scholar] [CrossRef]
- Egwuonwu, C.C.; Arinze, R.U.; Agbata, P.C.; Ike, V.C. Waste Tire Pyrolysis Product: An Alternative to Petrochemical Feedstock. Asian J. Phys. Chem. Sci. 2021, 9, 40–50. [Google Scholar] [CrossRef]
- Omwoyo, J.B.; Kimilu, R.K.; Onyari, J.M. Catalytic pyrolysis and composition evaluation of tire pyrolysis oil. Chem. Eng. Commun. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Kintzi, A.; Muñoz, K.; Schaumann, G.E. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 2020, 147, 104803. [Google Scholar] [CrossRef]
- Sharma, A.; Sawant, R.J.; Sharma, A.; Joshi, J.B.; Jain, R.K.; Kasilingam, R. Valorisation of End-of-Life tyres for generating valuable resources under circular economy. Fuel 2022, 314, 123138. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Gorka, E.; Olazar, M.; Bilbao, J. Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor: A Way to Obtain Valuable Products. In Pyrolysis; Samer, M., Ed.; IntechOpen: London, UK, 2017; p. 1984. ISBN 978-953-51-3312-4. [Google Scholar]
- Passaponti, M.; Lari, L.; Bonechi, M.; Bruni, F.; Giurlani, W.; Sciortino, G.; Rosi, L.; Fabbri, L.; Vizza, M.; Lazarov, V.K.; et al. Optimisation Study of Co Deposition on Chars from MAP of Waste Tyres as Green Electrodes in ORR for Alkaline Fuel Cells. Energies 2020, 13, 5646. [Google Scholar] [CrossRef]
- Elsernagawy, O.Y.H.; Hoadley, A.; Patel, J.; Bhatelia, T.; Lim, S.; Haque, N.; Li, C. Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. J. CO2 Util. 2020, 41, 101280. [Google Scholar] [CrossRef]
- Cox, R.; Salonitis, K.; Rebrov, E.; Impey, S.A. Revisiting the Effect of U-Bends, Flow Parameters, and Feasibility for Scale-Up on Residence Time Distribution Curves for a Continuous Bioprocessing Oscillatory Baffled Flow Reactor. Ind. Eng. Chem. Res. 2022, 61, 11181–11196. [Google Scholar] [CrossRef]
- Yue, J. Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chem. Eng. Process. Process. Intensif. 2022, 177, 109002. [Google Scholar] [CrossRef]
- Zhao, L.; Shao, J.; Xiang, L.; Feng, Y.; Wang, Z.; Lin, F. Co-pyrolysis of oil sludge with hydrogen-rich plastics in a vertical stirring reactor: Kinetic analysis, emissions, and products. Front. Environ. Sci. Eng. 2022, 16, 135. [Google Scholar] [CrossRef]
- Abdurakhman, Y.B.; Putra, Z.A.; Bilad, M.R.; Nordin, N.A.H.M.; Wirzal, M.D.H. Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem. Eng. Res. Des. 2018, 134, 564–574. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total. Environ. 2021, 750, 141514. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Garcia-Perez, M. Historical Developments of Pyrolysis Reactors: A Review. Energy Fuels 2017, 31, 5751–5775. [Google Scholar] [CrossRef] [Green Version]
- Purwanta; Bayu, A.I.; Mellyanawaty, M.; Budiman, A.; Budhijanto, W. Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse. Renew. Energy 2022, 201, 116544. [Google Scholar] [CrossRef]
- Westerhout, R.W.J.; Van Koningsbruggen, M.P.; Van Der Ham, A.G.J.; Kuipers, J.A.M.; Van Swaaij, W.P.M. Techno-Economic Evaluation of High Temperature Pyrolysis Processes for Mixed Plastic Waste. Chem. Eng. Res. Des. 1998, 76, 427–439. [Google Scholar] [CrossRef]
- Shah, S.A.Y.; Zeeshan, M.; Farooq, M.Z.; Ahmed, N.; Iqbal, N. Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renew. Energy 2019, 130, 238–244. [Google Scholar] [CrossRef]
- Fulgencio-Medrano, L.; García-Fernández, S.; Asueta, A.; Lopez-Urionabarrenechea, A.; Perez-Martinez, B.B.; Arandes, J.M. Oil Production by Pyrolysis of Real Plastic Waste. Polymers 2022, 14, 553. [Google Scholar] [CrossRef]
- Kasar, P.; Sharma, D.; Ahmaruzzaman, M. Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process. J. Clean. Prod. 2020, 265, 121639. [Google Scholar] [CrossRef]
- Abdelrahman, A.; Farghali, A.; Zaki, A.H.; Hamouda, A.S. Fabrication of a novel composite material used for thermo-cracking of Plastic Waste. J. Mater. Environ. Sci. 2021, 2508, 483–496. [Google Scholar]
- Li, Y.; Jin, B.; Zhang, X.; Liu, G. Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851. J. Anal. Appl. Pyrolysis 2021, 155, 105084. [Google Scholar] [CrossRef]
- Krishna, J.V.J.; Damir, S.S.; Vinu, R. Pyrolysis of electronic waste and their mixtures: Kinetic and pyrolysate composition studies. J. Environ. Chem. Eng. 2021, 9, 105382. [Google Scholar] [CrossRef]
- Dai, L.; Karakas, O.; Cheng, Y.; Cobb, K.; Chen, P.; Ruan, R. A review on carbon materials production from plastic wastes. Chem. Eng. J. 2023, 453, 139725. [Google Scholar] [CrossRef]
- Ye, Q.; Xu, J.-M.; Zhang, Y.-J.; Chen, S.-H.; Zhan, X.-Q.; Ni, W.; Tsai, L.-C.; Jiang, T.; Ma, N.; Tsai, F.-C. Metal-organic framework modified hydrophilic polyvinylidene fluoride porous membrane for efficient degerming selective oil/water emulsion separation. npj Clean Water 2022, 5, 23. [Google Scholar] [CrossRef]
- Bičáková, O.; Straka, P. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production. Energy Convers. Manag. 2016, 116, 203–213. [Google Scholar] [CrossRef]
- Yazdani, E.; Hashemabadi, S.H.; Taghizadeh, A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Manag. 2019, 85, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, N.; Muzenda, E.; Mamvura, T.A.; Belaid, M.; Patel, B. The Development of a Waste Tyre Pyrolysis Production Plant Business Model for the Gauteng Region, South Africa. Processes 2020, 8, 766. [Google Scholar] [CrossRef]
- Nkosi, N.; Muzenda, E.; Gorimbo, J.; Belaid, M. Developments in waste tyre thermochemical conversion processes: Gasification, pyrolysis and liquefaction. RSC Adv. 2021, 11, 11844–11871. [Google Scholar] [CrossRef] [PubMed]
- Sekar, M.; Ponnusamy, V.K.; Pugazhendhi, A.; Nižetić, S.; Praveenkumar, T. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design. J. Environ. Manag. 2022, 302, 114046. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Djokic, M.R.; Zayoud, A.; Ragaert, K.; De Meester, S.; Van Geem, K.M. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manag. 2022, 138, 83–115. [Google Scholar] [CrossRef]
- Aminu, I.; Nahil, M.A.; Williams, P.T. High-yield hydrogen from thermal processing of waste plastics. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2022, 175, 3–13. [Google Scholar] [CrossRef]
- Ghenai, C.; Rasheed, M.A.; Alshamsi, M.J.; Alkamali, M.A.; Ahmad, F.F.; Inayat, A. Design of Hybrid Solar Photovoltaics/Shrouded Wind Turbine Power System for Thermal Pyrolysis of Plastic Waste. Case Stud. Therm. Eng. 2020, 22, 100773. [Google Scholar] [CrossRef]
- Cortazar, M.; Gao, N.; Quan, C.; Suarez, M.A.; Lopez, G.; Orozco, S.; Santamaria, L.; Amutio, M.; Olazar, M. Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Process. Technol. 2022, 225, 107044. [Google Scholar] [CrossRef]
- Sołowski, G.; Konkol, I.; Shalaby, M.; Cenian, A. Methane and hydrogen production from potato wastes and wheat straw under dark fermentation. Chem. Process Eng. Inz. Chem. I Proces. 2021, 42, 3–13. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Krzyżyńska, R.; Jouhara, H. Hydrogen sulfide removal from waste tyre pyrolysis gas by inorganics. Int. J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Ayeni, A.O.; Daramola, M.O. Parametric Optimization of Biohydrogen Production from Potato Waste and Scale-Up Study Using Immobilized Anaerobic Mixed Sludge. Waste Biomass Valorizat. 2019, 10, 1177–1189. [Google Scholar] [CrossRef]
- Nasirian, N.; Almassi, M.; Minaei, S.; Widmann, R. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energy 2011, 36, 411–420. [Google Scholar] [CrossRef]
- Mavukwana, A.-E.; Sempuga, C. Recent developments in waste tyre pyrolysis and gasification processes. Chem. Eng. Commun. 2020, 209, 485–511. [Google Scholar] [CrossRef]
- Al-Qadri, A.A.; Ahmed, U.; Jameel, A.G.A.; Zahid, U.; Usman, M.; Ahmad, N. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. Polymers 2022, 14, 2056. [Google Scholar] [CrossRef]
- Chen, X.; Gierlich, C.H.; Schötz, S.; Blaumeiser, D.; Bauer, T.; Libuda, J.; Palkovits, R. Hydrogen Production Based on Liquid Organic Hydrogen Carriers through Sulfur Doped Platinum Catalysts Supported on TiO2. ACS Sustain. Chem. Eng. 2021, 9, 6561–6573. [Google Scholar] [CrossRef]
- Naddeo, M.; Viscusi, G.; Gorrasi, G.; Pappalardo, D. Degradable Elastomers: Is There a Future in Tyre Compound Formulation? Molecules 2021, 26, 4454. [Google Scholar] [CrossRef]
- Mikulski, M.; Ambrosewicz-Walacik, M.; Hunicz, J.; Nitkiewicz, S. Combustion engine applications of waste tyre pyrolytic oil. Prog. Energy Combust. Sci. 2021, 85, 100915. [Google Scholar] [CrossRef]
- Dębowski, M.; Dudek, M.; Zieliński, M.; Nowicka, A.; Kazimierowicz, J. Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. Energies 2021, 14, 6025. [Google Scholar] [CrossRef]
- Saad, J.M.; Williams, P.T.; Zhang, Y.S.; Yao, D.; Yang, H.; Zhou, H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. J. Anal. Appl. Pyrolysis 2021, 156, 105135. [Google Scholar] [CrossRef]
- Rajkumar, P.; Somasundaram, M. Pyrolysis of residual tyres: Exergy and kinetics of pyrogas. S. Afr. J. Chem. Eng. 2022, 42, 53–60. [Google Scholar] [CrossRef]
- Boshagh, F.; Rostami, K.; van Niel, E.W.J. Application of kinetic models in dark fermentative hydrogen production–A critical review. Int. J. Hydrogen Energy 2022, 47, 21952–21968. [Google Scholar] [CrossRef]
- Sołowski, G.; Pastuszak, K. Modelling of dark fermentation of glucose and sour cabbage. Heliyon 2021, 7, e07690. [Google Scholar] [CrossRef]
- Esfahani, Z.; Rostami, K. Verification ofexperimental design and statistical methods for optimization of dark hydrogen production. Iran. Chem. Eng. J. 2021, 20, 49–75. [Google Scholar]
- Boshagh, F.; Rostami, K.; Moazami, N. Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int. J. Hydrogen Energy 2019, 44, 14395–14405. [Google Scholar] [CrossRef]
- Shanmugam, S.; Hari, A.; Kumar, D.; Rajendran, K.; Mathimani, T.; Atabani, A.; Brindhadevi, K.; Pugazhendhi, A. Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. Fuel 2021, 285, 119052. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.; Kumar, G.; Yang, Y.-H. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total. Environ. 2021, 765, 144429. [Google Scholar] [CrossRef]
- López, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B Environ. 2011, 104, 211–219. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T. Catalytic Pyrolysis of Coffee Grounds Using NiCu-Impregnated Catalysts. Energy Fuels 2014, 28, 228–235. [Google Scholar] [CrossRef]
- Faber, H.; Lin, Y.-H.; Thomas, S.R.; Zhao, K.; Pliatsikas, N.; McLachlan, M.A.; Amassian, A.; Patsalas, P.A.; Anthopoulos, T.D. Indium Oxide Thin-Film Transistors Processed at Low Temperature via Ultrasonic Spray Pyrolysis. ACS Appl. Mater. Interfaces 2015, 7, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Cen, K.; Zhuang, X.; Gan, Z.; Ma, Z.; Li, M.; Chen, D. Effect of the combined pretreatment of leaching and torrefaction on the production of bio-aromatics from rice straw via the shape selective catalytic fast pyrolysis. Energy Rep. 2021, 7, 732–739. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Zając, D.; Honisz, D.; Łapkowski, M.; Sołoducho, J. 2,1,3-Benzothiadiazole Small Donor Molecules: A DFT Study, Synthesis, and Optoelectronic Properties. Molecules 2021, 26, 1216. [Google Scholar] [CrossRef] [PubMed]
- Wilma, K.; Shu, C.-C.; Scherf, U.; Hildner, R. Two-photon induced ultrafast coherence decay of highly excited states in single molecules. New J. Phys. 2019, 21, 045001. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Samal, B.; Dubey, B.K.; Bhattacharya, J. 12-Emissions and Environmental Burdens Associated with Plastic Solid Waste Management. In Plastics to Energy; Al-Salem, S.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 313–342. ISBN 978-0-12-813140-4. [Google Scholar]
- Pacheco-López, A.; Lechtenberg, F.; Somoza-Tornos, A.; Graells, M.; Espuña, A. Economic and Environmental Assessment of Plastic Waste Pyrolysis Products and Biofuels as Substitutes for Fossil-Based Fuels. Front. Energy Res. 2021, 9, 676233. [Google Scholar] [CrossRef]
- Fivga, A.; Dimitriou, I. Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy 2018, 149, 865–874. [Google Scholar] [CrossRef]
- Baxter, L.; Lucas, Z.; Walker, T.R. Evaluating Canada’s single-use plastic mitigation policies via brand audit and beach cleanup data to reduce plastic pollution. Mar. Pollut. Bull. 2022, 176, 113460. [Google Scholar] [CrossRef]
Ash content | PET | HDPE | PS | PP | LLDPE |
No | 3% | No | 2% | No |
Metals and Pollutants [63] | Tires [17] | Plastics [64] | Remarks | References |
---|---|---|---|---|
As | Preservatives of natural rubber | Catalysts in the HDPE process | As preservatives, they block decomposition. It is important to perform pyrolysis at the temperature of 650 °C to avoid the occurrence of gaseous oxides | [65,66] |
Cd | A thermal stabilizer of both natural and synthetic rubber | CdS is a catalyst in the polymerization of PVC. Pigment in PE, PP, and PET. Occurs also in cable sheets and flooring | Thermal stabilizers that block pyrolysis. There is a need for an approach for the fast removal of Cd from tires and plastics for more economical and environmentally friendly pyrolysis. | [67,68] |
Chlorine | Preservatives of natural rubber | The substituents of a polymer chain | Pyrolysis of PVC needs to overcome the coproduction of HCl in gaseous form. | [69] |
Cr | Supports polymerization of synthetic rubber | Much in HDPE, PVC, PP, PS, PET, PA, ABS, PU, LLDPE | Polymerization residues block pyrolytic decomposition, a removal approach is needed | [70,71] |
Pb | 20 ppm on tire average, heat stabilizer of rubber in tire production | In flooring, PVC, and dense plastics, LDPE is used as a heat stabilizer. average value of 247 ppm | Heat stabilizer slows down pyrolysis; thus, efficient pyrolysis attempts need to remove it firstly | [72,73] |
Hg | Catalyst stabilizers in synthetic rubber for tires | High in vacuum cleaner bags, PVC, PP HDPE, PS. | Heat stabilizers slow pyrolysis and poison catalyst | [74] |
Ni | Catalyst in tire production | Stabilizer in production of HIPS, PP, LDPE, ABS | Stabilizer slows pyrolysis | [75] |
Sb | Stabilizers of rubber and styrene in tire production | Catalysts in PET fibers | Catalyst stabilizers | [76] |
Type of Waste | Fixed Bed Reactor | Fluidized Bed Reactor | Conical Sparked Bed | Microwave | Auger | Rotary Kiln | Ablative | Column |
---|---|---|---|---|---|---|---|---|
Waste Tires | Suitable for fast pyrolysis, simple design and operation, high HRT, low heat transfer Optimal temperature for bus tires is 400 °C | Fast pyrolysis flash time from 1 s to 4 s, in slow 1–5 s. Enhances oil yield, high investment, design and operation costs. | Fast heat transfer, suitable gas–solid contact | Enhanced heat transfer operation under isothermal conditions. Good for production of absorbent carbon black | Low HRT, good mass balance [84] | Slow, simple design leads to small HRT, promising heat transfer [85] | Fast for waste tires at experimental scale [18], suitable for catalytic pyrolysis | Good for preparation of nanotubes; see Ahmad et al. [86]; suitable for ash preparation |
Plastics | Suitable for nanoparticle production from HDPE and PVC [87] | N2 flow reduction solved, vacuum product distribution | With more solid circulation, a coarse part can be processed | Promising and effective heat transfer to plastic waste [88] | Low HRT, good mass balance | No use | No use | Good for oxidant removal [89] |
Type of Process | Raw Material | Efficiency | Remarks | Reference |
---|---|---|---|---|
Catalytic process microwave-assisted | HDPE chips | Liquid from 22% to 68% Gas from 76% to 56% | Two-times higher ash yield than in the case of PP. Higher hydrogen, methane, ethylene, and ethane content of gas cases than in other cases. Much higher content (20%) of n-alkenes and n-alkanes. | [21] |
PP chips | Gas 76%, liquid 24% | Gas content has higher methane and hydrogen content than in pellet. Liquid content is mostly aromatics and cycloalkane, with 3% more polycyclic aromatic hydrocarbon and aromatics. | ||
PP pellet | Liquid products from 44.8% to 49% Gas from 48% to 56% | Much more ash than in chips. High propylene level in liquid content. | ||
LDPE chips | Gas 47%, liquid 48% | Addition of NiO catalysts, high in monocycled aromatics and hydrocarbon content in liquid phase, higher methane content from HDPE and PP | [90] | |
Fortan® conical sparked bed | Waste tires with removed metal cord | - | Liquid part with high content of monocycle aromatics and hydrocarbon up to 52% | [91] |
Fixed bed reactor heating rate 10 °C/min | PS | Oil yield 88.5% (mostly aromatic compounds) | Polymer catalyst (bentonite clay) ratio 0.05 | [92] |
PP | Oil yield 90.5% (mostly nonaromatic compounds C13>) | Polymer catalyst (bentonite clay) ratio 0.1 | ||
LDPE | Oil yield 87.6% (mostly nonaromatic compounds C13>) | Polymer catalyst (bentonite clay) ratio 0.2 | ||
HDPE | Oil yield 88.9% (mostly nonaromatic compounds C13>) | Polymer catalyst (bentonite clay) ratio 0.15 | ||
Horizontal tube furnace | PVC | 37.3% ash yield | 90% removal of Cd and Zn was reached. | [93] |
Rotary kiln pyrolysis | PE bottles | 39.7% of pyrolytic oil | The distilled product from pyrolytic oil from plastic waste has the potential to be used as a gasoline replacement fuel. | [94] |
Horizontal tube furnace 750 °C | Waste tires with removed iron reinforcement | 42% char yield, 40% oil yield, 18% gas yield | The parameters analyzed, which included the composition of the bio-oil, showed the presence of important chemicals that can be used as feedstocks and thermal conversion kinetics and to build a special waste recovery refinery | [95] |
Catalytic pyrolysis column reactor Pyro Gerstel | ABS | Aromatic 85%, including 25% of BTEX, no ash | ZSM-5 catalyst (Zeolite Socony Mobil–5) containing 10% Ni | [81] |
PET | Aromatic 81%, including 12% of toluene, no ash | NH4/ZSM-5 | ||
PP | Aromatic 78%, xylene 26.58%, total BTX 48.69% No ash | NH4/ZSM-5 | ||
Tire waste SBR (styrene–butadiene rubber) | Aromatic 37.82%, including 16.77% xylene, 14% ash, high efficiency | ZSM-5 catalyst (Zeolite Socony Mobil–5) containing 10% Ni | ||
Non-vulcanized SBR | Aromatic 68%, including 26.74% of BTX (10.49% xylene) | NH4/ZSM-5 | ||
Tubular reactor | Polyurethane | 43% liquid | Na2CO3 as catalyst | [96] |
Two-stage reactor tubular and furnace reactor | Automotive seat foam consists mostly of polyurethane | 60% gaseous, 10% ash | Nickel catalyst (5 wt% Ni/SiO2) | [82] |
Process Type | Dark Fermentation | Pyrolysis | ||
---|---|---|---|---|
Substrate | Potato Waste | Wheat Straw | Waste Tires | Plastic PET [126] |
Hydrogen yield in the experiment | 0.07 L of H2/g VSS [127] | 0.08 L of H2/g VSS [127] | 0.38 L of H2/g tire [128] | 0.29 L of H2/g PET [124] |
The highest hydrogen yield published | 0.3 L of H2/g VSS [129]. | 0.148 L of H2/g VSS [130] | 2.15 L of H2/g tire [131] | 3.32 L of H2/g PET [132] |
Conditions in the selected study | Milled with a sieve 10 mm | Milled with 10 mm sieve (knives were changed every 2 h of milling, pH 5.2) | Minced to 5 mm, tube furnace quartz reactor Carbolite Gero® temperature 500 °C, sorbents: sodium hydroxide (15% solution), manganese oxide and zinc oxide [128] | Catalyst Al2O3: supported by Ni catalyst Temperature 900 °C, two-stage processes using fixed bed reactor composed of stainless steel with diameter of 2.2 cm and height of 25 cm, process length 20 min [125] |
Demand for process operation sufficient for the highest hydrogen production | Milling sieve 10 mm, stressing of inoculum, heating of reactor, pH 7.8 | Milling sieve 10 mm, stressing of inoculum, heating of reactor, pH 5.48 | Tire shredded to 6 mm, catalyst Al2O3:SiO2 supported by Ni catalyst, temperature 900 °C, a two-stage process using fixed bed reactor composed of stainless steel with diameter of 2.2 cm and height of 16 cm, process length 20 min [131] | A commercial Ni/Al2O3 catalyst doped with Ca (Süd Chemie-G90LDP) conical spouted bed reactor at temperature 700 °C |
Highest methane production yield in this study | 0.91 L/g VSS | 0.36 L/g VSS | 0.31 L/g waste tire [128] | 0.14 L/g PET [132] |
Price of hydrogen production for optimal conditions; the current price was assumed as 0.18 $/kWh [75,76] | 1.61 $/mL H2 [75] | 16.62 $/mL H2 [76] | 29.21 $/mL H2 [131] | 1.79 $/mL H2 [124] |
Price of hydrogen production in the study, the current price was assumed as 0.18 $/kWh | 0.62 $/mL H2 [73] | 5.8 $/mL H2 [73] | 9.97 $/mL H2 [128] | 3.21 $/mL H2 [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sołowski, G.; Shalaby, M.; Özdemir, F.A. Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review. Hydrogen 2022, 3, 531-549. https://doi.org/10.3390/hydrogen3040034
Sołowski G, Shalaby M, Özdemir FA. Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review. Hydrogen. 2022; 3(4):531-549. https://doi.org/10.3390/hydrogen3040034
Chicago/Turabian StyleSołowski, Gaweł, Marwa Shalaby, and Fethi Ahmet Özdemir. 2022. "Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review" Hydrogen 3, no. 4: 531-549. https://doi.org/10.3390/hydrogen3040034
APA StyleSołowski, G., Shalaby, M., & Özdemir, F. A. (2022). Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review. Hydrogen, 3(4), 531-549. https://doi.org/10.3390/hydrogen3040034