Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Conditions
2.2. Testing under Static Conditions
3. Results
3.1. Expected Higher Heating Value (HHV)
3.2. Measured HHV—Flowing Gas
3.3. Measured HHV—No Flow Conditions
3.4. Gas Sampling Data Analysis
3.5. Odorant Evaluation
- (1)
- RDL—Readily Detectable Level—The concentration in air at which one recognizes an odor as a natural gas odor;
- (2)
- TDL—Threshold Detectable Level—The concentration in air that is the first indication of a slight but recognizable change in odor.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EIA. The United States Uses a Mix of Energy Sources. Available online: https://www.eia.gov/energyexplained/us-energy-facts/#:~:text=Download%20image%20U.S.%20primary%20energy,natural%20gas%2032%25%20petroleum%2036%25 (accessed on 15 February 2023).
- National Grid Group. Our Vision for a Fossil-Free Future. April 2022. Available online: https://www.nationalgrid.com/us/fossilfree (accessed on 9 February 2023).
- American Gas Association. Delivering Natural Gas. Available online: https://www.aga.org/natural-gas/reliable/delivering-natural-gas/ (accessed on 21 February 2023).
- NY State Department of Environmental Conservation. Climate Leadership and Community Protection Act. Available online: https://climate.ny.gov/resources/scoping-plan/ (accessed on 22 February 2023).
- New York City Mayor’s Office of Sustainability. Pathways to Carbon-Neutral NYC. Available online: https://www.nyc.gov/assets/sustainability/downloads/pdf/publications/Carbon-Neutral-NYC.pdf (accessed on 21 February 2023).
- US Department of Energy. H2@Scale–Hydrogen and Fuel Cell Technologies Office. Available online: https://www.energy.gov/eere/fuelcells/h2scale (accessed on 21 February 2023).
- National Renewable Energy Laboratory. HyBlend Project to Accelerate Potential for Blending Hydrogen in Natural Gas Pipelines. 18 November 2020. Available online: https://www.nrel.gov/news/program/2020/hyblend-project-to-accelerate-potential-for-blending-hydrogen-in-natural-gas-pipelines.html (accessed on 21 February 2023).
- Blanton, E.M.; Lott, M.C.; Smith, K.; Columbia University CGEP. Investing in the US Natural Gas Pipeline System to Support Net-Zero Targets. 22 April 2021. Available online: https://www.energypolicy.columbia.edu/publications/investing-us-natural-gas-pipeline-system-support-net-zero-targets (accessed on 20 February 2023).
- Hawaii Gas–Decarbonization and Energy Innovation. Available online: https://www.hawaiigas.com/clean-energy/decarbonization (accessed on 21 February 2023).
- Hong Kong and China Gas Company Limited (Towngas). Gas Production. Available online: https://www.towngas.com/en/About-Us/Hong-Kong-Gas-Business/Gas-Production (accessed on 21 February 2023).
- Pipeline and Hazardous Materials Safety Administration (PHMSA). PHMSA Data and Statistics. Available online: https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview (accessed on 30 June 2022).
- Mahajan, D.; Tan, K.; Venkatesh, T.; Kileti, P.; Clayton, C. Hydrogen Blending in Gas Pipeline Networks-A Review. Energies 2022, 3582, 15. [Google Scholar] [CrossRef]
- Loughran, J. Britain’s Gas Grid Preparing to Accept 20 Percent Hydrogen Mix by 2023. Eng. Technol. 2022. Available online: https://eandt.theiet.org/content/articles/2022/01/britain-s-gas-grid-preparing-to-accept-20-per-cent-hydrogen-mix-by-2023/ (accessed on 14 February 2023).
- HyDeploy. Available online: https://hydeploy.co.uk/ (accessed on 21 February 2023).
- Center for Hydrogen Safety. H2 Tools–UL Subject 2075 Standard for Gas and Vapor Detectors and Sensors. Available online: https://h2tools.org/fuel-cell-codes-and-standards/ul-subject-2075-standard-gas-and-vapor-detectors-and-sensors (accessed on 21 February 2023).
- Wilson, R. Interconnect Guide for Emerging Fuels into Energy Delivery Networks; Northeast Gas Association: Needham, MA, USA, 2022. [Google Scholar]
- The Engineering Toolbox. Available online: https://www.engineeringtoolbox.com/ (accessed on 14 February 2023).
- Abbas, A.J.; Hassani, H.; Burby, M.; John, I.J. An Investigation into the Volumetric Flow Rate Requirement of Hydrogen Transportation in Existing Natural Gas Pipelines and Its Safety Implications. Gases 2021, 1, 156–179. [Google Scholar] [CrossRef]
- Kong, M.; Feng, S.; Xia, Q.; Chen, C.; Pan, Z.; Gao, Z. Investigation of Mixing Behavior of Hydrogen Blended to Natural Gas in Gas Network. Sustainability 2021, 13, 4255. [Google Scholar] [CrossRef]
- Chaharborj, S.S.; Amin, N. Controlling the pressure of hydrogen-natural gas mixture in an inclined pipeline. PLoS ONE 2020, 15, e0228955. [Google Scholar] [CrossRef] [PubMed]
- Folga, S.M. Natural Gas Pipeline Technology Overview. Argonne National Laboratory Report # ANL/EVS/TM/08-5. November 2007. Available online: http://www.osti.gov/bridge (accessed on 9 April 2023).
- Paulo, M. Coelho and Carlos Pinho. Considerations About Equations for Steady State Flow in Natural Gas Pipelines. J. Braz. Soc. Mech. Sci. Eng. 2007, 3, 273. [Google Scholar]
- Blessing Ibeh, B.; Gardner, C.; Ternan, M. Separation of hydrogen from a hydrogen/methane mixture using a PEM fuel cell. Int. J. Hydrog. Energy 2007, 32, 908–914. [Google Scholar] [CrossRef]
- Tan, K.; Mahajan, D.; Venkatesh, T.A. Computational fluid dynamic modeling of me-thane-hydrogen mixture transportation in pipelines: Estimating energy costs. MRS Adv. 2022, 7, 388–393. [Google Scholar] [CrossRef]
- Alkhatib, I.I.I.; AlHajaj, A.; Almansoori, A.; Vega, L.F. Accurate Predictions of the Effect of Hydrogen Composition on the Thermodynamics and Transport Properties of Natural Gas. Ind. Eng. Chem. Res. 2022, 61, 6214–6234. [Google Scholar] [CrossRef]
- Comp, N.Y. Codes & Regs. Tit. 16 § 255.625–Odorization of Gas. Available online: https://www.law.cornell.edu/regulations/new-york/16-NYCRR-255.625 (accessed on 14 February 2023).
- Micro GC Fusion Gas Analyzer. Available online: https://www.inficon.com/en/products/micro-gc-fusion-gas-analyzer (accessed on 16 November 2022).
- Chevron Phillips Chemical. Scentinel E Gas Odorant. Available online: https://www.cpchem.com/what-we-do/solutions/specialty-chemicals/products/scentinelr-e-gas-odorant (accessed on 12 January 2023).
- Heating Values for Natural Gas Hydrocarbons. EnggCyclopedia. Available online: https://www.enggcyclopedia.com/2011/09/heating-values-natural-gas/ (accessed on 14 February 2023).
- Crippen, K. Odor Masking and Odorant Fade in Hydrogen Blends; GTI Energy: Des Plaines, IL, USA, 2023. [Google Scholar]
- ANSYS Fluent. Fluid Simulation Software. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 2 February 2023).
- Wang, D.; Subbaraman, G. Hydrogen Segregation Study for Transporting and Using Hydrogen and Natural Gas Blends. In Proceedings of the Center for Hydrogen Safety Americas Conference, Anaheim, CA, USA, 20–22 September 2022. [Google Scholar]
- Kiernan, P.K.C. Catalytic reactions of ethyl mercaptan on disulfides of molybdenum and tungsten. J. Catal. 1965, 4, 380–393. [Google Scholar] [CrossRef]
- Murugan, A.; Bartlett, S.; Hesketh, J.; Hans, B.; Hinds, G. Project Closure Report–Hydrogen Odorant and Leak Detection. November 2020. Available online: https://sgn.co.uk/sites/default/files/media-entities/documents/2020-11/00%20Hydrogen%20Odorant%20Final%20Report%20v10.pdf (accessed on 21 February 2023).
Natural Gas | Hydrogen | |
---|---|---|
Atomic Weight (g/mol) | 19.0 | 2.016 |
Density (g/L) | 0.717 | 0.08988 |
Flammability Limits in Air (by volume) | 5.3 to 15 | 4 to 75 |
Autoignition Temperature (°F) | 813 | 858 |
Mass diffusivity in air (mm2/s) | 23.98 | 78.79 |
Joule-Thomson Effect | Temperature decreases when pressure is decreased. | Temperature increases when pressure is decreased. |
% H2 by Volume | % Methane |
---|---|
1 | 99 |
3 | 97 |
5 | 95 |
12 | 88 |
20 | 80 |
30 | 70 |
46 | 54 |
50 | 50 |
1 | 99 | x | x | x | x |
3 | 97 | x | x | x | x |
5 | 95 | x | x | x | x |
12 | 88 | x | x | x | x |
20 | 80 | x | x | x | x |
30 | 70 | x | x | x | x |
46 | 54 | x | x | x | x |
50 | 50 | x | x | x | x |
Test Blend | Nominal Pressure | Expected Btu | Average Btu Content | Δ% Btu Content (Ave/Exp) | Btu Content Top Average | Btu Content Bot Average | Δ% Btu Content (Top/Bot) |
---|---|---|---|---|---|---|---|
1%/99% | 60 psi | 1005.12 | 1005.19535 | 0.00750% | 1005.192094 | 1005.198606 | −0.001% |
30 psi | 1005.2066 | 0.00862% | 1005.203021 | 1005.210173 | −0.001% | ||
15 psi | 1005.20915 | 0.00887% | 1005.209656 | 1005.208642 | 0.000% | ||
7 in w.c. | 1005.22165 | 0.01011% | 1005.224149 | 1005.219156 | 0.000% | ||
3%/97% | 60 psi | 991.36 | 991.268122 | −0.00927% | 991.2356654 | 991.3005779 | −0.007% |
30 psi | 991.195402 | −0.01660% | 991.1576299 | 991.2331749 | −0.008% | ||
15 psi | 991.215118 | −0.01461% | 991.1933077 | 991.2369288 | −0.004% | ||
7 in w.c. | 991.21195 | −0.01493% | 991.154181 | 991.26972 | −0.012% | ||
5%/95% | 60 psi | 977.6 | 977.869476 | 0.02757% | 977.7601578 | 978.0061227 | −0.025% |
30 psi | 977.467179 | −0.01359% | 977.4753297 | 977.4590274 | 0.002% | ||
15 psi | 977.300404 | −0.03065% | 977.3025322 | 977.2982751 | 0.000% | ||
7 in w.c. | 977.517717 | −0.00842% | 977.4475519 | 977.5878829 | −0.014% | ||
12%/88% | 60 psi | 924.44 | 929.784225 | 0.57810% | 929.7134863 | 929.8549629 | −0.015% |
30 psi | 929.161289 | 0.51072% | 929.1773447 | 929.1452333 | 0.003% | ||
15 psi | 928.224976 | 0.40943% | 928.2049044 | 928.2450473 | −0.004% | ||
7 in w.c. | 929.179203 | 0.51266% | 929.7134863 | 928.64492 | 0.115% | ||
20%/80% | 60 psi | 874.4 | 873.071327 | −0.15195% | 872.9897522 | 873.1529009 | −0.019% |
30 psi | 873.839169 | −0.06414% | 873.8376382 | 873.8407 | 0.000% | ||
15 psi | 874.174518 | −0.02579% | 874.1147958 | 874.2342401 | −0.014% | ||
7 in w.c. | 874.140792 | −0.02964% | 873.9236349 | 874.357949 | −0.050% | ||
30%/70% | 60 psi | 805.6 | 803.9794 | −0.20117% | 804.0146816 | 803.9441192 | 0.009% |
30 psi | 803.955343 | −0.20415% | 804.1279821 | 803.7827037 | 0.043% | ||
15 psi | 805.534732 | −0.00810% | 805.5477617 | 805.521703 | 0.003% | ||
7 in w.c. | 805.41906 | −0.02246% | 805.2713123 | 805.566808 | −0.037% | ||
46%/54% | 60 psi | 695.52 | 696.528223 | 0.14496% | 696.7049385 | 696.351508 | 0.051% |
30 psi | 697.269818 | 0.25158% | 697.3876545 | 697.1519809 | 0.034% | ||
15 psi | 697.933584 | 0.34702% | 697.574454 | 698.2927142 | −0.103% | ||
7 in w.c. | 696.739028 | 0.17527% | 696.5187997 | 696.9592559 | −0.063% | ||
50%/50% | 60 psi | 668 | 670.94224 | 0.44046% | 671.0419379 | 670.8425419 | 0.030% |
30 psi | 669.306335 | 0.19556% | 669.2148027 | 669.3978666 | −0.027% | ||
15 psi | 668.753714 | 0.11283% | 668.6412561 | 668.8661716 | −0.034% | ||
7 in w.c. | 668.791505 | 0.11849% | 668.5742101 | 669.0088 | −0.065% |
Test Blend | Nominal Pressure | Expected Btu | Average Btu Content | Δ% Btu Content (Ave/Exp) | Btu Content Top Average | Btu Content Bot Average | Δ% Btu Content (Top/Bot) |
---|---|---|---|---|---|---|---|
1%/99% | 60 psi | 1005.12 | 1005.202872 | 0.00824% | 1005.200326 | 1005.205418 | −0.001% |
30 psi | 1005.221983 | 0.01015% | 1005.210947 | 1005.233018 | −0.002% | ||
15 psi | 1005.225478 | 0.01049% | 1005.304593 | 1005.146363 | 0.016% | ||
7 in w.c. | 1005.212114 | 0.00916% | 1005.223141 | 1005.201087 | 0.002% | ||
3%/97% | 60 psi | 991.36 | 991.1932953 | −0.01682% | 991.2254621 | 991.1611285 | 0.006% |
30 psi | 991.1336416 | −0.02283% | 991.1043352 | 991.1629481 | −0.006% | ||
15 psi | 991.2389718 | −0.01221% | 991.2527263 | 991.2252173 | 0.003% | ||
7 in w.c. | 991.8773036 | 0.05218% | 991.8903398 | 991.8642674 | 0.003% | ||
5%/95% | 60 psi | 977.6 | 977.8195396 | 0.02246% | 977.7825704 | 978.0061227 | −0.023% |
30 psi | 977.6069001 | 0.00071% | 977.5607124 | 977.6530877 | −0.009% | ||
15 psi | 977.6394134 | 0.00403% | 977.672286 | 977.6065408 | 0.007% | ||
7 in w.c. | 977.5552962 | −0.00457% | 977.6779296 | 977.4326628 | 0.025% | ||
12%/88% | 60 psi | 924.44 | 929.7331587 | 0.57258% | 929.6615645 | 929.8047529 | −0.015% |
30 psi | 929.8903519 | 0.58958% | 929.9769154 | 929.8037884 | 0.019% | ||
15 psi | 928.3172582 | 0.41942% | 928.3156259 | 928.3188905 | 0.000% | ||
7 in w.c. | 929.0235059 | 0.49581% | 929.6615645 | 928.3854473 | 0.137% | ||
20%/80% | 60 psi | 874.4 | 873.1238521 | −0.14595% | 873.1951774 | 873.0525268 | 0.016% |
30 psi | 874.0380987 | −0.04139% | 874.0736758 | 874.0025216 | 0.008% | ||
15 psi | 874.3069428 | −0.01064% | 874.4204768 | 874.1934088 | 0.026% | ||
7 in w.c. | 874.2145421 | −0.02121% | 874.433881 | 873.9952033 | 0.050% | ||
30%/70% | 60 psi | 805.6 | 804.262761 | −0.16599% | 804.4403469 | 804.085175 | 0.044% |
30 psi | 804.2156637 | −0.17184% | 804.4459661 | 803.9853613 | 0.057% | ||
15 psi | 803.9415347 | −0.20587% | 804.3515304 | 803.531539 | 0.102% | ||
7 in w.c. | 805.6070473 | 0.00087% | 805.6069961 | 805.6070985 | 0.000% | ||
46%/54% | 60 psi | 695.52 | 696.6521458 | 0.16278% | 696.4728637 | 696.831428 | −0.051% |
30 psi | 697.2818304 | 0.25331% | 697.4075021 | 697.1561587 | 0.036% | ||
15 psi | 696.9337841 | 0.20327% | 696.6784167 | 697.1891516 | −0.073% | ||
7 in w.c. | 696.1511517 | 0.09075% | 696.1156773 | 696.1866262 | −0.010% | ||
50%/50% | 60 psi | 668 | 670.4622213 | 0.36860% | 670.3412592 | 670.5831835 | −0.036% |
30 psi | 669.015767 | 0.15206% | 669.0414735 | 668.9900605 | 0.008% | ||
15 psi | 669.2615084 | 0.18885% | 669.613746 | 668.9092708 | 0.105% | ||
7 in w.c. | 668.7575991 | 0.11341% | 668.7789813 | 668.7362169 | 0.006% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kileti, P.; Barkwill, B.; Spiteri, V.; Cavanagh, C.; Mahajan, D. Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution. Hydrogen 2023, 4, 210-225. https://doi.org/10.3390/hydrogen4020015
Kileti P, Barkwill B, Spiteri V, Cavanagh C, Mahajan D. Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution. Hydrogen. 2023; 4(2):210-225. https://doi.org/10.3390/hydrogen4020015
Chicago/Turabian StyleKileti, Pradheep, Brian Barkwill, Vincent Spiteri, Christopher Cavanagh, and Devinder Mahajan. 2023. "Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution" Hydrogen 4, no. 2: 210-225. https://doi.org/10.3390/hydrogen4020015
APA StyleKileti, P., Barkwill, B., Spiteri, V., Cavanagh, C., & Mahajan, D. (2023). Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution. Hydrogen, 4(2), 210-225. https://doi.org/10.3390/hydrogen4020015