PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of PdS-ZnS/PVAc Nanofibers
2.3. Characterization
2.4. Photocatalytic Water Splitting for Hydrogen Evolution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Wang, W.; Hou, Y.; Hao, Y.; Zhao, Y.; Wang, S.; Meng, J.; Xu, H. Co3O4 nanosheet/g-C3N4 hybrid photocatalysts for promoted H2 evolution. ACS Appl. Nano Mater. 2023, 6, 8717–8725. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, M.; Yan, D.; Hu, X.; Fan, J.; Sun, T.; Liu, E. S-scheme Co9S8 nanoflower/red phosphorus nanosheet heterojunctions for enhanced photocatalytic H2 evolution. ACS Appl. Nano Mater. 2023, 6, 14478–14487. [Google Scholar] [CrossRef]
- Lange, T.; Reichenberger, S.; Ristig, S.; Rohe, M.; Strunk, J.; Barcikowski, S.; Schlögl, R. Zinc sulfide for photocatalysis: White angel or black sheep? Prog. Mater. Sci. 2022, 124, 100865. [Google Scholar] [CrossRef]
- Dong, J.; Fang, W.; Hui, Y.; Xia, W.; Zeng, X.; Shangguan, W. Few-layered MoS2/ZnCdS/ZnS heterostructures with an enhanced photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 4893–4902. [Google Scholar] [CrossRef]
- Wu, P.; Liu, H.; Xie, Z.; Xie, L.; Liu, G.; Xu, Y.; Chen, J.; Lu, C.Z. Excellent charge separation of NCQDs/ZnS nanocomposites for the promotion of photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2024, 16, 16601–16611. [Google Scholar] [CrossRef]
- Huang, H.; Dai, B.; Wang, W.; Lu, C.; Kou, J.; Ni, Y.; Wang, L.; Xu, Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, S.; Han, Z.; Fu, M.; Wang, K.; Yu, H. CdS Nanorods with an Optimized ZnS Coating as Composite Photocatalysts for Enhanced Water Splitting under Solar Light Irradiation. ACS Appl. Nano Mater. 2022, 5, 9747–9753. [Google Scholar] [CrossRef]
- Hong, E.; Kim, D.; Kim, J.H. Heterostructured metal sulfide (ZnS-CuS-CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting. J. Ind. Eng. Chem. 2014, 20, 3869–3874. [Google Scholar] [CrossRef]
- Arun Kumar, G.; Bhojya Naik, H.S.; Viswanath, R.; Suresh Gowda, I.K.; Santosh, K.N. Tunable emission property of biotin capped Gd:ZnS nanoparticles and their antibacterial activity. Mater. Sci. Semicond. Process. 2017, 58, 22–29. [Google Scholar] [CrossRef]
- Mao, S.; Shi, J.W.; Sun, G.; Zhang, Y.; Ma, D.; Song, K.; Lv, Y.; Zhou, J.; Wang, H.; Cheng, Y. PdS quantum dots as a hole attractor encapsulated into the MOF@Cd0.5Zn0.5S heterostructure for boosting photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 2022, 14, 48770–48779. [Google Scholar] [CrossRef]
- Panthi, G.; Barakat, N.A.M.; Risal, P.; Yousef, A.; Pant, B.; Unnithan, A.R.; Kim, H.Y. Preparation and characterization of nylon-6/gelatin composite nanofibers via electrospinning for biomedical applications. Fibers Polym. 2013, 14, 718–723. [Google Scholar] [CrossRef]
- Babazadeh-Mamaqani, M.; Razzaghi, D.; Roghani-Mamaqani, H.; Babie, A.; Rezaei, M.; Hoogenboom, R.; Salami-Kalajahi, M. Photo-responsive electrospun polymer nanofibers: Mechanisms, properties, and applications. Prog. Mater. Sci. 2024, 146, 101312. [Google Scholar] [CrossRef]
- Wang, X.X.; Yu, G.F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Panthi, G.; Park, S.-J.; Kim, T.-W.; Chung, H.-J.; Hong, S.-T.; Park, M.; Kim, H.-Y. Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J. Mater. Sci. 2015, 50, 4477–4485. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, L.; Cheng, H.M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020, 120, 2811–2878. [Google Scholar] [CrossRef] [PubMed]
- Panthi, G.; Park, S.J.; Chung, H.J.; Park, M.; Kim, H.Y. Silver nanoparticles decorated Mn2O3 hybrid nanofibers via electrospinning; towards the development of new bactericides with synergistic effect. Chem. Phys. 2017, 189, 70–75. [Google Scholar] [CrossRef]
- Panthi, G.; Gyawali, K.R.; Park, M. Towards the enhancement in photocatalytic performance of Ag3PO4 nanoparticles through sulfate doping and anchoring on electrospun nanofibers. Nanomaterials 2020, 10, 929. [Google Scholar] [CrossRef] [PubMed]
- Quilez-Molina, A.I.; Barroso-Solares, S.; Hurtado-Garcia, V.; Heredia-Guerrero, J.A.; Rodriguez-Mendez, M.L.; Rodriguez-Perez, M.A.; Pinto, J. Encapsulation of copper nanoparticles in electrospun nanofibers for sustainable removal of pesticides. ACS Appl. Mater. Interfaces 2023, 15, 20385–20397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xia, J.; Pang, X.; Zhao, M.; Wang, B.; Yang, L.; Wan, H.; Wu, J.; Fu, S. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C 2017, 73, 537–543. [Google Scholar] [CrossRef]
- Nkabinde, S.C.; Moloto, M.J.; Matabola, K. Optimized loading of TiO2 nanoparticles into electrospun polyacrylonitrile and cellulose acetate polymer fibers. J. Nanomater. 2020, 1, 9429421. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Abadir, M.F.; Sheikh, F.A.; Kanjwal, M.A.; Park, S.J.; Kim, H.Y. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem. Eng. J. 2010, 156, 487–495. [Google Scholar] [CrossRef]
- Ma, L.; Lin, C.; Jiang, W.; Yan, S.; Jiang, H.; Song, X.; Ai, X.; Cao, X.; Ding, Y. Achieving highly efficient photocatalytic hydrogen evolution through the construction of g-C3N4@PdS@Pt nanocomposites. Molecules 2024, 29, 493. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Wang, K.; Lv, R.; Xu, Y. ZnO/ZnS-PdS core/shell nanorods: Synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution. Appl. Surf. Sci. 2013, 283, 732–739. [Google Scholar] [CrossRef]
- Yang, J.H.; Yan, H.J.; Wang, Z.L.; Wen, F.Y.; Wang, Z.J.; Fan, D.Y.; Shi, J.Y.; Li, C. Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal. 2012, 290, 151–157. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, J.; Zhu, Y.; Liu, Y.; Qian, Y.; Zheng, H. Nanocomposite CdS particles in polymer rods fabricated by a novel hydrothermal polymerization and simultaneous sulfidation technique. Chem. Commun. 2001, 17, 1332–1333. [Google Scholar] [CrossRef]
- Panthi, G.; Ranjit, R.; Khadka, S.; Gyawali, K.R.; Kim, H.Y.; Park, M. Characterization and antibacterial activity of rice grain-shaped ZnZ nanoparticles immobilized inside the polymer electrospun nanofibers. Adv. Compos. Hybrid Mater. 2020, 3, 8–15. [Google Scholar] [CrossRef]
- Barawi, M.; Ferrer, I.J.; Ares, J.R.; Sanchez, C. Hydrogen Evolution Using Palladium Sulfide (PdS) Nanocorals as Photoanodes in Aqueous Solution. ACS Appl. Mater. Interfaces 2014, 6, 20544–20549. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Qi, M.Y.; Li, J.Y.; Tan, C.L.; Tang, Z.R.; Xu, Y.J. Visible light driven dehydrocoupling of thiols to disulfides and evolution over PdS-decorated ZnInS4 composites. Chin. J. Catal. 2023, 51, 5565. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J.R. Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer. Nano Lett. 2011, 11, 4774–4779. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yu, Z.; Li, Y.; Li, Y. PdS-modified CdS/NiS composite as an efficient photocatalyst for H2 evolution in visible light. Catal. Today 2013, 225, 136–141. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. [Google Scholar] [CrossRef]
- Yan, H.J.; Yang, J.H.; Ma, G.J.; Wua, G.P.; Zong, X.; Lei, Z.B.; Shi, J.Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalys. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Khan, K.; Tao, X.; Zhao, Y.; Zeng, B.; Shi, M.; Ta, N.; Li, J.; Jin, J.; Li, R.; Li, C. Spatial separation of dual-cocatalysts on one-dimensional semiconductors for photocatalytic hydrogen production. J. Mater. Chem. A 2019, 7, 15607–15614. [Google Scholar] [CrossRef]
- Chen, Q.; Suo, C.; Zhang, S.; Wang, Y. Effect of PdS on Photocatalytic Hydrogen Evolution of Nanostructured CdS under Visible Light Irradiation. Int. J. Photoenergy 2013, 1, 149586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panthi, G.; Gyawali, A. PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution. Hydrogen 2024, 5, 403-413. https://doi.org/10.3390/hydrogen5030023
Panthi G, Gyawali A. PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution. Hydrogen. 2024; 5(3):403-413. https://doi.org/10.3390/hydrogen5030023
Chicago/Turabian StylePanthi, Gopal, and Arun Gyawali. 2024. "PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution" Hydrogen 5, no. 3: 403-413. https://doi.org/10.3390/hydrogen5030023
APA StylePanthi, G., & Gyawali, A. (2024). PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution. Hydrogen, 5(3), 403-413. https://doi.org/10.3390/hydrogen5030023