Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physico-Chemical Characterizations
2.3. Catalytic Testing
3. Results
3.1. Characterization
3.2. CH4/H2O Reaction
3.3. Transient Reaction of Dry CH4 over Ir/GDC at 750 °C After Treatment in He
3.4. Transient Reaction of Dry CH4 over Ir/GDC at 750 °C After Treatment in H2/He
3.5. Transient Reaction of H2O with Ir/GDC at 750 °C After Reaction with Dry CH4
4. Discussion
4.1. Mechanism and Active Sites for CH4/H2O Reaction over Ir/GDC
4.2. Influence of H2 on the Reactivity of Ir/GDC with CH4/H2O
- -
- The appearance of an activation period before reaching steady-state activity,
- -
- A decrease in the reaction rate at stationary state with respect to that obtained after treatment in inert gas.
- -
- Some effect on the Ce4+ → Ce3+ reduction. Full Ce4+→Ce3+ reduction is possible with CH4 after He, whereas only 80% is reached in CH4 after H2.
- -
- A decrease of the CH4 consumption rate at equivalent reduction extent after H2 compared to the corresponding rate after He.
5. Conclusions
- Sites at metallic Ir particles’ surface as active sites for the cracking of CH4 into reactive C species.
- Reducible (Ce4+) sites at GDC surface in the close vicinity of well-dispersed Ir particles and responsible for a redox mechanism involving Ce4+/Ce3+ sites being reduced by reaction with reactive C into CO (or CO2) and re-oxidized by H2O, replenishing surface O mobile species.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molenda, J.; Świerczek, K.; Zajac, W. Functional Materials for the IT-SOFC. J. Power Sources 2007, 173, 657–670. [Google Scholar] [CrossRef]
- Singhal, S.C. Solid Oxide Fuel Cells for Power Generation. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 179–194. [Google Scholar] [CrossRef]
- Chem, J.M. Trends in Electrode Development for next Generation Solid Oxide Fuel Cells. J. Mater. Chem. A 2016, 4, 17913–17932. [Google Scholar] [CrossRef]
- Fan, L.; Zhu, B.; Su, P.; He, C. Nano Energy Nanomaterials and Technologies for Low Temperature Solid Oxide Fuel Cells: Recent Advances, Challenges and Opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Sreedhar, I.; Agarwal, B.; Goyal, P.; Singh, S.A. Recent Advances in Material and Performance Aspects of Solid Oxide Fuel Cells. J. Electroanal. Chem. 2019, 848, 113315. [Google Scholar] [CrossRef]
- Choudhury, A.; Chandra, H.; Arora, A. Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review. Renew. Sustain. Energy Rev. 2013, 20, 430–442. [Google Scholar] [CrossRef]
- Park, S.; Vohs, J.M.; Gorte, R.J. Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell. Nature 2000, 404, 265–267. [Google Scholar] [CrossRef]
- McIntosh, S.; Gorte, R.J. Direct-Hydrocarbon Solid Oxide Fuel Cells. Chem. Rev. 2004, 104, 4845–4866. [Google Scholar] [CrossRef]
- Atkinson, A.; Barnett, S.; Gorte, R.J.; Irvine, J.T.S.; Mc Evoy, A.J.; Mogensen, M.; Singhal, S.C.; Vohs, J. Advanced Anodes for High-Temperature Fuel Cells. Nat. Mater. 2004, 3, 17–27. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Tanveer, W.H.; Sayed, E.T.; Assad, M.E.H.; Allagui, A.; Cha, S.W. On the Technical Challenges Affecting the Performance of Direct Internal Reforming Biogas Solid Oxide Fuel Cells. Renew. Sustain. Energy Rev. 2019, 101, 361–375. [Google Scholar] [CrossRef]
- Faheem, H.H.; Abbas, S.Z.; Tabish, A.N.; Fan, L.; Maqbool, F. A Review on Mathematical Modelling of Direct Internal Reforming- Solid Oxide Fuel Cells. J. Power Sources 2022, 520, 230857. [Google Scholar] [CrossRef]
- Kupecki, J.; Motylinski, K.; Milewski, J. Dynamic Analysis of Direct Internal Reforming in a SOFC Stack with Electrolyte-Supported Cells Using a Quasi-1D Model. Appl. Energy 2018, 227, 198–205. [Google Scholar] [CrossRef]
- Guerra, C.; Lanzini, A.; Leone, P.; Santarelli, M.; Brandon, N.P. Optimization of Dry Reforming of Methane over Ni/YSZ Anodes for Solid Oxide Fuel Cells. J. Power Sources 2014, 245, 154–163. [Google Scholar] [CrossRef]
- Matsui, T.; Kishida, R.; Kim, J.; Muroyama, H.; Eguchi, K. Performance Deterioration of Ni–YSZ Anode Induced by Electrochemically Generated Steam in Solid Oxide Fuel Cells. J. Electrochem. Soc. 2010, 157, B776–B781. [Google Scholar] [CrossRef]
- Cheah, S.K.; Massin, L.; Aouine, M.; Steil, M.C.; Fouletier, J.; Gélin, P. Methane Steam Reforming in Water de Ficient Conditions on Ir/Ce0.9Gd0.1O2−x Catalyst: Metal-Support Interactions and Catalytic Activity Enhancement. Appl. Catal. B Environ. 2018, 234, 279–289. [Google Scholar] [CrossRef]
- Alharthi, A.I. Nickel-Iron Catalyst for Decomposition of Methane to Hydrogen and Filamentous Carbon: Effect of Calcination and Reaction Temperatures. Alex. Eng. J. 2023, 67, 129–141. [Google Scholar] [CrossRef]
- Girona, K.; Toyir, J.; Gélin, P.; Bultel, Y. Modeling of a SOFC Fuelled by Methane: Influence of the Methane Steam Reforming Kinetics. Electrochem. Soc. 2011, 35, 945–954. [Google Scholar] [CrossRef]
- Fan, L.; Mokhov, A.; Saadabadi, S.A.; Brandon, N.; Purushothaman, V.A. Methane Steam Reforming Reaction in Solid Oxide Fuel Cells: Influence of Electrochemical Reaction and Anode Thickness. J. Power Sources 2021, 507, 230276. [Google Scholar] [CrossRef]
- Vernoux, P.; Guindet, J.; Kleitz, M. Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells. J. Electrochem. Soc. 1998, 145, 3487–3492. [Google Scholar] [CrossRef]
- Klein, J.M.; Bultel, Y.; Georges, S.; Pons, M. Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming. Chem. Eng. Sci. 2007, 62, 1636–1649. [Google Scholar] [CrossRef]
- Nobrega, S.D.; Gelin, P.; Georges, S.; Steil, M.C.; Augusto, B.L.; Noronha, F.B.; Fonseca, F.C. A Fuel-Flexible Solid Oxide Fuel Cell Operating in Gradual Internal Reforming. J. Electrochem. Soc. 2014, 161, F354–F359. [Google Scholar] [CrossRef]
- Girona, K.; Sailler, S.; Gélin, P.; Bailly, N.; Georges, S.; Bultel, Y. Modelling of Gradual Internal Reforming Process over Ni-YSZ SOFC Anode with a Catalytic Layer. Can. J. Chem. Eng. 2015, 93, 285–296. [Google Scholar] [CrossRef]
- Georges, S.; Parrour, G.; Henault, M.; Fouletier, J. Gradual Internal Reforming of Methane: A Demonstration. Solid State Ion. 2006, 177, 2109–2112. [Google Scholar] [CrossRef]
- Zhan, Z.; Barnett, S.A. An Octane-Fueled Solid Oxide Fuel Cell. Science 2005, 308, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Colclasure, A.M.; Kee, R.J.; Lin, Y.; Barnett, S.A. Anode Barrier Layers for Tubular Solid-Oxide Fuel Cells with Methane Fuel Streams. J. Power Sources 2006, 161, 413–419. [Google Scholar] [CrossRef]
- Wang, K.; Ran, R.; Shao, Z. Methane-Fueled IT-SOFCs with Facile in Situ Inorganic Templating Synthesized Mesoporous Sm0.2Ce0.8O1.9 as Catalytic Layer. J. Power Sources 2007, 170, 251–258. [Google Scholar] [CrossRef]
- Bassil, S.; Caillot, T.; Aires, F.C.S.; Meunier, F.C.; Kaddouri, A. Methane Steam Reforming over Ni/YSZ Cermet Anode Materials Synthesized by Different Methods. React. Chem. Eng. 2024, 9, 1251–1260. [Google Scholar] [CrossRef]
- Qiu, P.; Sun, S.; Yang, X.; Chen, F.; Xiong, C.; Jia, L.; Li, J. A Review on Anode On-Cell Catalyst Reforming Layer for Direct Methane Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 25208–25224. [Google Scholar] [CrossRef]
- Klein, J.; Hénault, M.; Roux, C.; Bultel, Y.; Georges, S. Direct Methane Solid Oxide Fuel Cell Working by Gradual Internal Steam Reforming: Analysis of Operation. J. Power Sources 2009, 193, 331–337. [Google Scholar] [CrossRef]
- Toyir, J.; Gélin, P.; Belatel, H.; Kaddouri, A. Ir/Ce0.9Gd0.1O2−x as a New Potential Anode Component in Solid Oxide Fuel Cells Integrating the Concept of Gradual Internal Reforming of Methane. Catal. Today 2010, 157, 451–455. [Google Scholar] [CrossRef]
- Postole, G.; Girona, K.; Toyir, J.; Kaddouri, A.; Gélin, P. Over Ir/Ce0.9Gd0.1O2–X: Resistance to Coke Formation and Sulfur Poisoning. Fuel Cells 2012, 12, 275–287. [Google Scholar] [CrossRef]
- Mosqueda, B.; Toyir, J.; Kaddouri, A.; Ge, P. Applied Catalysis B: Environmental Steam Reforming of Methane under Water Deficient Conditions over Gadolinium-Doped Ceria. Appl. Catal. B Environ. 2009, 88, 361–367. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalysis by Ceria and Related Materials; World Scientific: Singapore, 2002. [Google Scholar]
- Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide. J. Catal. 1998, 175, 152–160. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Structural Requirements and Reaction Pathways in Methane Activation and Chemical Conversion Catalyzed by Rhodium. J. Catal. 2004, 225, 116–127. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters. Angew. Chemie Int. Ed. 2004, 43, 3685–3688. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.; Zhang, Z.; Shen, X. Methane Activation on Single-Atom Ir-Doped Metal Nanoparticles from First Principles. Phys. Chem. Chem. Phys. 2021, 23, 15564–15573. [Google Scholar] [CrossRef]
- Ramirez-Cabrera, E.; Atkinson, A.; Chadwick, D. Reactivity of Ceria, Gd- and Nb-Doped Ceria to Methane. Appl. Catal. B Environ. 2002, 36, 193–206. [Google Scholar] [CrossRef]
- Sun, C.; Stimming, U. Recent Anode Advances in Solid Oxide Fuel Cells. J. Power Sources 2007, 171, 247–260. [Google Scholar] [CrossRef]
- Maestri, M.; Vlachos, D.G.; Beretta, A.; Groppi, G.; Tronconi, E. Steam and Dry Reforming of Methane on Rh: Microkinetic Analysis and Hierarchy of Kinetic Models. J. Catal. 2008, 259, 211–222. [Google Scholar] [CrossRef]
- Leitenburg, C.D.; Kagpar, J.; Finetti, P.; Santonit, A. Rh–CeO2 Interaction Induced by High-Temperature Reduction. Characterization and Catalytic Behaviour in Transient and Continuous Conditions. J. Chem. Soc. Faraday Trans. 1992, 88, 1311–1319. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Aneggi, E.; Boaro, M.; Leitenburg, C.D.; Dolcetti, G.; Trovarelli, A. Insights into the Redox Properties of Ceria-Based Oxides and Their Implications in Catalysis. J. Alloys Compd. 2006, 408, 1096–1102. [Google Scholar] [CrossRef]
- Holmgren, A.; Duprez, D.; Andersson, B. A Model of Oxygen Transport in Pt/Ceria Catalysts from Isotope Exchange. J. Catal. 1999, 182, 441–448. [Google Scholar] [CrossRef]
- Ozawa, M.; Hattori, M.; Yamaguchi, T. Thermal Stability of Ceria Catalyst on Alumina and Its Surface Oxygen Storage Capacity. J. Alloys Compd. 2008, 451, 621–623. [Google Scholar] [CrossRef]
- Vivier, L.; Duprez, D. Ceria-Based Solid Catalysts for Organic Chemistry. ChemSusChem 2010, 3, 654–678. [Google Scholar] [CrossRef]
- Wu, K.; Sun, L.; Yan, C. Recent Progress in Well-Controlled Synthesis of Ceria-Based Nanocatalysts towards Enhanced Catalytic Performance. Adv. Energy Mater. 2016, 6, 1600501. [Google Scholar] [CrossRef]
- He, J.; Yao, P.; Qiu, J.; Zhang, H.; Jiao, Y.; Wang, J.; Chen, Y. Enhancement Effect of Oxygen Mobility over Ce0.5Zr0.5O2 Catalysts Doped by Multivalent Metal Oxides for Soot Combustion. Fuel 2021, 286, 119359. [Google Scholar] [CrossRef]
- Zalc, J.M.; Sokolovskii, V.; Loffle, D.G. Are Noble Metal-Based Water—Gas Shift Catalysts Practical for Automotive Fuel Processing? J. Catal. 2002, 206, 169–171. [Google Scholar] [CrossRef]
- Jacobs, G.; Graham, U.M.; Chenu, E.; Patterson, P.M.; Dozier, A.; Davis, B.H. Low-Temperature Water—Gas Shift: Impact of Pt Promoter Loading on the Partial Reduction of Ceria and Consequences for Catalyst Design. J. Catal. 2005, 229, 499–512. [Google Scholar] [CrossRef]
Catalyst | % Ir Given by Elemental Analysis | Specific Surface Area (m2/g) |
---|---|---|
GDC | - | 43 |
GDC activated under N2, 900 °C, 2 h | - | 6 |
Ir/GDC | 0.07 | 42 |
Step | Holding Time (min) | H2 (mL/min) | H2O (mL/min) | Ar (mL/min) | Air (mL/min) |
---|---|---|---|---|---|
- | - | - | 0 | 500 | 500 |
1st | 75 | 80 | 0 | 500 | 580 |
2nd | 15 | 160 | 10 | 500 | 660 |
3rd | 5 | 320 | 20 | 500 | 820 |
4th | 5 | 640 | 30 | 360 | 1000 |
5th | 5 | 1000 | 30 | 0 | 1000 |
Pretreatment | Rate of CH4 Consumption (µmol/s.gcat) | CO Formed (% mol) | CO2 Formed (% mol) | H2 Formed (% mol) |
---|---|---|---|---|
N2, 900 °C, 2 h | 24.0 | 0.3 | 0.35 | 2.2 |
H2, 900 °C, 2 h | 14.7 | 0.1 | 0.30 | 1.7 |
Julich FZJ | 13.7 | 0.1 | 0.39 | 1.3 |
Gas Produced | Time Interval of Formation (s) | Type of Reaction | Amount (µmol) | Reduced Ceria O (µmol) |
---|---|---|---|---|
CO2 | 0–200 | (4) | 0.45 | 1.8 |
CO2 | 12–200 | (6) | 0.75 | 1.5 |
CO | 12–4000 | (7) | 49.9 | 49.9 |
Total amount of reduced ceria O | 53.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachquer, F.; Toyir, J. Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst. Hydrogen 2024, 5, 882-900. https://doi.org/10.3390/hydrogen5040046
Lachquer F, Toyir J. Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst. Hydrogen. 2024; 5(4):882-900. https://doi.org/10.3390/hydrogen5040046
Chicago/Turabian StyleLachquer, Farah, and Jamil Toyir. 2024. "Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst" Hydrogen 5, no. 4: 882-900. https://doi.org/10.3390/hydrogen5040046
APA StyleLachquer, F., & Toyir, J. (2024). Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst. Hydrogen, 5(4), 882-900. https://doi.org/10.3390/hydrogen5040046