Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application
Abstract
:1. Introduction
2. Experimental Setup
2.1. Instruments
2.2. Fabrication of Sulfamethoxazole with Para Dimethyl Amino Benzaldehyde (L)
2.3. Fabrication of Inorganic Complexes of Organotin Compounds with Ligand
3. Results and Discussion
3.1. FTIR Spectroscopy
3.2. 1H-NMR Spectra
3.3. 13C-NMR Spectra
3.4. Characterization by (119Sn-NMR) Spectroscopy
3.5. FESEM Analysis
3.6. Measurements Nitrogen Adsorption of Metal Complex
3.7. Hydrogen Uptake of Sulfamethoxazole Tin Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, M.; Vo, X.V. Exploring the Relationships among Innovation, Financial Sector Development and Environmental Pollution in Selected Industrialized Countries. J. Environ. Manag. 2021, 284, 112057. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, Y.; Fang, M.; Liu, B.; Chen, R.; Shi, R.; Wu, Q.; Zeng, Z.; Li, L. In-Situ Activated Ultramicroporous Carbon Materials Derived from Waste Biomass for carbon dioxide Capture and Benzene Adsorption. Biomass Bioenergy 2022, 158, 106353. [Google Scholar] [CrossRef]
- Keith, D.W. Why Capture carbon dioxide from the Atmosphere? Science 2009, 325, 1654–1655. [Google Scholar] [CrossRef]
- Bergstra, A.D.; Brunekreef, B.; Burdorf, A. The Influence of Industry-Related Air Pollution on Birth Outcomes in an Industrialized Area. Environ. Pollut. 2021, 269, 115741. [Google Scholar] [CrossRef]
- Goh, K.; Karahan, H.E.; Yang, E.; Bae, T.-H. Graphene-Based Membranes for carbon dioxide/CH4 Separation: Key Challenges and Perspectives. Appl. Sci. 2019, 9, 2784. [Google Scholar] [CrossRef]
- Sethia, G.; Sayari, A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 2016, 99, 289–294. [Google Scholar] [CrossRef]
- Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129. [Google Scholar] [CrossRef]
- Orimo, S.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.W.C.; Areán, C.O. Materials for hydrogen storage: Current research trends and perspectives. Chem. Commun. 2008, 6, 668–681. [Google Scholar] [CrossRef]
- Unger, K. Structure of Porous Adsorbents. Angew. Chem. Inrernat. Edit. 1972, 11, 267–278. [Google Scholar] [CrossRef]
- Bao, L.; Gao, P.; Peng, S. Analysis Method of Pore Size Distribution of Porous Materials. Mater. Sci. 2020, 10, 95–103. [Google Scholar]
- Ying, J.Y.; Mehner, C.P.; Wong, M.S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56–77. [Google Scholar] [CrossRef]
- Yu, J.C.; Wang, X.; Fu, X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films. Chem. Mater. 2004, 16, 1523–1530. [Google Scholar] [CrossRef]
- Hou, K.; Tian, B.; Li, F.; Bian, Z.; Zhao, D.; Huang, C. Highly Crystallized Mesoporous TiO2 Films and Their Applications in Dye Sensitized Solar Cells. J. Mater. Chem. 2005, 15, 2414–2420. [Google Scholar] [CrossRef]
- Choi, S.Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G.A. Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystallineanatase Electrodes. Nano Lett. 2004, 4, 1231–1235. [Google Scholar] [CrossRef]
- Ye, B.; Trudeau, M.; Antonelli, D. Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host. Adv. Mater. 2001, 13, 29–33. [Google Scholar] [CrossRef]
- Skadtchenko, B.O.; Trudeau, M.; Kwon, C.W.; Dunn, B.; Antonelli, D. Antonelli, Synthesis and Electrochemistry of Li-and Na-Fulleride Doped Mesoporous Taoxides. Chem. Mater. 2004, 16, 2886–2894. [Google Scholar] [CrossRef]
- Zhe, L.Z.; Zheng, H.Y. Theoretical and Practical Discussion of Measurement Accuracy for Physisorption with Micro-and Mesoporous Materials. Chin. J. Catal. 2013, 34, 1797–1810. [Google Scholar] [CrossRef]
- Al-Masoudi, W.; Jassim, S.; Khassaf, H. Synthesis and evolution of sulfamethoxazole derivative and assay antibacterial activity. Basrah J. Vet. Res. 2021, 20, 1–7. [Google Scholar] [CrossRef]
- Alhaydary, E.; Yousif, E. Synthesize and Characterize Dibutyltin (IV) Oxide Complex by Utilizing New Ligand. Al-Nahrain J. Sci. 2021, 24, 1–6. [Google Scholar] [CrossRef]
- Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org. Med. Chem. Lett. 2014, 4, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Arraq, R.R.; Hadi, A.G.; Ahmed, D.S.; El-Hiti, G.A.; Kariuki, B.M.; Husain, A.A.; Bufaroosha, M.; Yousif, E. Enhancement of photostabilization of poly (vinyl chloride) in the presence of tin–cephalexin complexes. Polymers 2023, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.K.; Yousif, E.A.; Rasheed, M.K.; Ahmed, D.S.; Bufaroosha, M.; Abdallh, M.; Al-Mashhadani, M.; Hashim, H.; Rashad, A.; Yusop, R.; et al. Application of Metal Oxides Nanoparticles to Enhance Ultraviolet Light Resistance of Polyvinyl Chloride Films. J. Curr. Sci. Technol. 2024, 14, 71. [Google Scholar] [CrossRef]
- Watheq, B.; Yousif, E.; Al-Mashhadani, M.H.; Mohammed, A.; Ahmed, D.S.; Kadhom, M.; Jawad, A.H. A surface morphological study, poly (vinyl chloride) photo-stabilizers utilizing ibuprofen tin complexes against ultraviolet radiation. Surfaces 2020, 3, 579–593. [Google Scholar] [CrossRef]
- Alhaydary, E.; Yousif, E.; Al-Mashhadani, M.H.; Ahmed, D.S.; Jawad, A.H.; Bufaroosha, M.; Ahmed, A.A. Sulfamethoxazole as a ligand to synthesize di-and tri-alkyltin (IV) complexes and using as excellent photo-stabilizers for PVC. J. Polym. Res. 2021, 28, 469. [Google Scholar] [CrossRef]
- Yu, S.; Li, C.; Fan, S.; Wang, J.; Liang, L.; Hong, M. Three organotin (IV) Schiff-base carboxylates: Synthesis, structural characterization and in vitro cytotoxicity against cis-platin-resistent cancer cells. J. Mol. Struct. 2022, 1257, 132585. [Google Scholar] [CrossRef]
- Ibraheem, H.A.; El-Hiti, G.A.; Yousif, E.; Ahmed, D.S.; Kariuki, B.M. Modified polymethyl methacrylate as a sustainable medium for capturing carbon dioxide. Mater. Lett. 2024, 372, 137031. [Google Scholar] [CrossRef]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Albertsma, J.; Gabriels, D.; Horst, R.; Polat, S.; Snoeks, C.; Kapteijn, F.; Eral, H.; Vermaas, D.; Mei, B.; et al. Carbon monoxide separation: Past, present and future. Chem. Soc. Rev. 2023, 52, 3741–3777. [Google Scholar] [CrossRef]
- Hu, J.; Yang, S.; Wang, X.; Zhang, D.; Tan, B. High Pore Volume Hyper-Cross-Linked Polymers via Mixed-Solvent Knitting: A Route to Superior Hierarchical Porosity for Methane Storage and Delivery. Macromolecules 2024, 57, 5507–5519. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Chen, X. Adsorption and Diffusion Characteristics of CO2 and CH4 in Anthracite Pores: Molecular Dynamics Simulation. Processes 2024, 12, 1131. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Wang, Z.; Liu, X.; Heng, S.; Li, Y.; Sun, Z. Molecular simulation of CH4 and CO2 adsorption behavior in coal physicochemical structure model and its control mechanism. Energy 2023, 285, 129474. [Google Scholar] [CrossRef]
- Juan-Juan, J.; Marco-Lozar, J.P.; Suárez-García, F.; Cazorla-Amorós, D.; Linares-Solano, A. A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon 2010, 48, 2906–2909. [Google Scholar] [CrossRef]
- Ahmed, D.S.; El-Hiti, G.A.; Yousif, E.; Hameed, A.S.; Abdalla, M. New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media. Polymers 2017, 9, 336. [Google Scholar] [CrossRef]
Compounds | Color | M.P. (°C) | Yield (%) |
---|---|---|---|
L | Yellowish orange | 176–178 | 87 |
[Ph2SnL2] | Orange | 167–169 | 84 |
[Bu2SnL2] | Auburn | 156–158 | 81 |
[Me2SnL2] | Orange | 144–146 | 75 |
Compound | NH2 Amine | v (NH) Amid | v (C=N) Schiff Base | v (C=N) Lactam | v (S=O) Asym. | v (S=O) Sym. | v(Sn-N) | v (Sn-O) |
---|---|---|---|---|---|---|---|---|
Sulfamethoxazole | 3462 3372 | 3295 | - | 1592 | 1359 | 1151 | - | - |
Schiff base (L) | 3282 | 1660 | 1596 | 1363 | 1155 | - | - | |
[Ph2SnL2] | - | 1645 | 1588 | 1368 | 1159 | 560 | 457 | |
[Bu2SnL2] | 3282 | 1654 | 1585 | 1364 | 1156 | 524 | - | |
[Me2SnL2] | 3293 | 1650 | 1583 | 1332 | 1155 | 552 | 467 |
Compound | 13C-NMR (400 MHz): DMSO-d6, δ, ppm in Hz) |
---|---|
174.96, 166.33, 160.13, 156.02, 155.37, 136.14, 131.93, 130.42, 123.30, 118.69, 112.26, 99.80, 42.60, 13.65. |
Compound | δ ppm |
---|---|
Ph2SnL2 | −404.93 |
Bu2SnL2 | −215.01 |
Me2SnL2 | −242.53 |
Comp. | SBET (m2.g–1) | Pore Volume (cm3.g–1) | Average Pore Diameter (nm) |
---|---|---|---|
Ph2SnL2 | 3.049 ± 0.42 | 0.018 ± 0.001 | 24.2 ± 2.71 |
Bu2SnL2 | 13.792 ± 1.89 | 0.026 ± 0.002 | 7.2 ± 0.99 |
Me2SnL2 | 5.5197 ± 0.84 | 0.024 ± 0.002 | 17.4 ± 2.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, D.S.; Emad, N.; Kadhom, M.; Yousif, E.; Al-Mashhadani, M. Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application. Hydrogen 2024, 5, 872-881. https://doi.org/10.3390/hydrogen5040045
Ahmed DS, Emad N, Kadhom M, Yousif E, Al-Mashhadani M. Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application. Hydrogen. 2024; 5(4):872-881. https://doi.org/10.3390/hydrogen5040045
Chicago/Turabian StyleAhmed, Dina S., Noor Emad, Mohammed Kadhom, Emad Yousif, and Mohammed Al-Mashhadani. 2024. "Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application" Hydrogen 5, no. 4: 872-881. https://doi.org/10.3390/hydrogen5040045
APA StyleAhmed, D. S., Emad, N., Kadhom, M., Yousif, E., & Al-Mashhadani, M. (2024). Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application. Hydrogen, 5(4), 872-881. https://doi.org/10.3390/hydrogen5040045