Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan
Abstract
:1. Introduction
2. Reduced Pigmentation Strains
3. Hyperproducer Strains
4. Osmotolerant Pullulan-Producing Strains
5. Strains Synthesizing Variable Molecular Weight Pullulans
6. Strains Synthesizing Pullulan from Hemicellulose
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zajic, J.E.; LeDuy, A. Flocculant and chemical properties of polysaccharide from Pullularia pullulans. Appl. Microbiol. 1973, 25, 628–635. [Google Scholar] [CrossRef]
- Ueda, S.; Fujita, K.; Komatsu, K.; Nakashima, Z. Polysaccharide produced by the genus Pullularia. l. Production of polysaccharide by growing cells. Appl. Microbiol. 1963, 11, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Leal-Serrano, G.; Ruperez, P.; Leal, J.A. Acidic polysaccharide from Aureobasidium pullulans. Trans. Brit. Mycol. Soc. 1980, 75, 57–62. [Google Scholar] [CrossRef]
- Bouveng, H.O.; Kiessling, H.; Lindberg, B.; McKay, J. Polysaccharides elaborated by Pullularia pullulans. l. The neutral glucan synthesized from sucrose solutions. Acta Chem. Scand. 1962, 16, 615–622. [Google Scholar] [CrossRef]
- Sowa, W.; Blackwood, A.C.; Adams, G.A. Neutral extracellular glucan of Pullularia pullulans (de Bary) Berkhout. Can. J. Chem. 1963, 41, 2314–2319. [Google Scholar] [CrossRef]
- Catley, B.J. Pullulan, a relationship between molecular weight and fine structure. FEBS Lett. 1970, 10, 190–193. [Google Scholar] [CrossRef]
- Catley, B.J.; Whelan, W.J. Observations on the structure of pullulan. Arch. Biochem. Biophys. 1971, 143, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Yuen, S. Pullulan and its applications. Process Biochem. 1974, 9, 7–9. [Google Scholar]
- Leathers, T.D. Biotechnological production and applications of pullulan. Appl. Microbiol. Biotechnol. 2003, 62, 468–473. [Google Scholar] [CrossRef]
- Shingel, K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr. Res. 2004, 339, 447–460. [Google Scholar] [CrossRef]
- Autissier, A.; Letourneur, D.; Le Visage, C. Pullulan-based hydrogel for smooth muscle cell culture. J. Biomed. Mater. Res. A 2007, 82A, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Vuppu, S.; Rath, K. The role of microbial pullulan, a biopolymer in pharmaceutical approaches: A review. J. Appl. Pharm. Sci. 2011, 1, 45–50. [Google Scholar]
- Kumar, D.; Saini, N.; Pandit, V.; Ali, S. An insight to pullulan: A biopolymer in pharmaceutical approaches. Int. J. Basic Appl. Sci. 2012, 1, 202–219. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Khanda, S.M. Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 2013, 95, 540–549. [Google Scholar] [CrossRef]
- Oguzhan, P.; Yangilar, F. Pullulan: Production and usage in food industry. Afr. J. Food Sci. Technol. 2013, 4, 57–63. [Google Scholar]
- Farris, S.; Unalan, I.U.; Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J. Appl. Polym. Sci. 2014, 131, 40539. [Google Scholar] [CrossRef]
- Alhaique, F.; Matricardi, P.; Di Meo, C.; Coviello, T.; Montanari, E. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. J. Drug Deliv. Technol. 2015, 30, 300–309. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Kennedy, J.F. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr. Polym. 2015, 123, 190–207. [Google Scholar] [CrossRef]
- Bulman, S.E.; Coleman, C.M.; Murphy, J.M.; Medcalf, N.; Ryan, A.E.; Barry, F. Pullulan: A new cytoadhesive for cell-mediated cartilage repair. Curr. Stem Cell Res. Ther. 2015, 6, 34. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym. 2016, 153, 455–462. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Ponnusami, V. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr. Polym. 2017, 173, 573–591. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Pullulan: A novel molecule for biomedical applications. Carbohydr. Polym. 2017, 171, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. 2018, 63, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr. Polym. 2019, 217, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, W.; Liu, Q.; Chen, X.; Lyu, Q.; Liu, G. Preparation, properties, and structural characterization of β-glucan/pullulan blend films. Int. J. Biol. Macromol. 2019, 140, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Grigoras, A.G. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ. Chem. Lett. 2019, 17, 1209–1223. [Google Scholar] [CrossRef]
- Tiwari, S.; Patil, R.; Dubey, S.K.; Bahadur, P. Derivatization approaches and applications of pullulan. Adv. Colloid Interface Sci. 2019, 269, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.-B.; Dant, S.; De Clerck, K.; Lazzeri, A.; Morganti, P. Pullulan for advanced sustainable body- and skin-contact applications. J. Funct. Biomater. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Ghaimici, L.; Constantin, M. A review of the use of pullulan derivatives in wastewater purification. React. Funct. Polym. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Wani, S.B.; Mir, S.A.; Khanday, F.A.; Masodi, F.A. Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. Innov. Food Sci. Emerg. Technol. 2021, 74, 102846. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Hassan, M.; Kennedy, J.F. Pullulan in biomedical research and development—A review. Int. J. Biol. Macromol. 2021, 166, 694–706. [Google Scholar] [CrossRef]
- Ganie, S.A.; Rather, L.I.; Li, Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydr. Polym. Technol. Appl. 2021, 2, 100115. [Google Scholar] [CrossRef]
- Shaat, F.; Pavaloiu, R.-D.; Hlevca, C. Current status of the applications of pullulan and its derivatives in biomedical field. Sci. Bull. Ser. F Biotechnol. 2022, 26, 125–132. [Google Scholar]
- Ghosh, T.; Priyadarshi, R.; de Souza, C.K.; Angioletti, B.L.; Rhim, J.-W. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci. Technol. 2022, 125, 43–53. [Google Scholar] [CrossRef]
- Wang, P.; Jia, S.-L.; Liu, G.-L.; Chi, Z.; Chi, Z.-M. Aureobasidium spp. and their applications in biotechnology. Process Biochem. 2022, 116, 72–83. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Singh, D.; Purewal, S.S.; Kennedy, J.F. Pullulan in pharmaceutical and cosmeceutical formulations: A review. Int. J. Biol. Macromol. 2023, 231, 123353. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Demirici, A.; Catchmark, J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011, 92, 29–44. [Google Scholar] [CrossRef]
- West, T.P. Production of the polysaccharide pullulan by Aureobasidium pullulans cell immobilization. Polysaccharides 2022, 3, 544–555. [Google Scholar] [CrossRef]
- Catley, B.J. Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl. Microbiol. 1971, 22, 641–649. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Ability of Aureobasidium pullulans to synthesize pullulan upon selected sources of carbon and nitrogen. Microbios 1991, 67, 117–124. [Google Scholar]
- Leathers, T.D.; Nofsinger, G.W.; Kurtzman, C.P.; Bothast, R.J. Pullulan production by color variant strains of Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 1988, 3, 231–239. [Google Scholar]
- Prasongsuk, S.; Berhow, M.A.; Dunlap, C.A.; Weisleder, D.; Leathers, T.D.; Eveleigh, D.E.; Punnapayak, H. Pullulan production by tropical isolates of Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 2007, 34, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Manitchotpisit, P.; Leathers, T.D.; Peterson, S.W.; Kurtzman, C.P.; Li, A.-L.; Eveleigh, D.E.; Lotrakul, P.; Prasongsuk, S.; Dunlap, C.A.; Vermillion, K.E.; et al. Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycol. Res. 2009, 113, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- West, T.P.; Strohfus, B. Effect of manganese on polysaccharide production and cellular pigmentation in the fungus Aureobasidium pullulans. World J. Microbiol. Biotechnol. 1997, 13, 233–235. [Google Scholar] [CrossRef]
- Catley, B.J. Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Appl. Microbiol. 1971, 22, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Catley, B.J. The extracellular polysaccharide, pullulan, produced by Aureobasidium pullulans: A relationship between elaboration rate and morphology. J. Gen. Microbiol. 1980, 120, 265–268. [Google Scholar] [CrossRef]
- Lacroix, C.; LeDuy, A.; Noel, G.; Choplin, L. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 1985, 27, 202–207. [Google Scholar] [CrossRef] [PubMed]
- West, T.P.; Reed-Hamer, B. Effect of pH on pullulan production relative to carbon source and yeast extract composition of growth medium. Microbios 1993, 75, 75–82. [Google Scholar]
- Seviour, R.J.; Kristiansen, B. Effect of ammonium ion concentration on polysaccharide production by Aureobasidium pullulans in batch culture. Eur. J. Appl. Microbiol. 1983, 17, 178–181. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Effect of nitrogen source on pullulan production by Aureobasidium pullulans grown in a batch bioreactor. Microbios 1999, 99, 147–159. [Google Scholar]
- Reed-Hamer, B.; West, T.P. Effect of complex nitrogen sources on pullulan production relative to carbon source. Microbios 1994, 80, 83–90. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Effect of oils and surfactants on pullulan production relative to nitrogen source. Microbios 1995, 83, 249–259. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Effect of temperature on pullulan production in relation to carbon source. Microbios 1993, 75, 261–268. [Google Scholar]
- Jiang, L. Optimization of fermentation conditions for pullulan production using response surface methodology. Carbohydr. Polym. 2010, 79, 414–417. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Influence of vitamins and mineral salts upon pullulan synthesis by Aureobasidium pullulans. Microbios 1992, 71, 115–123. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source. Microbios 1996, 88, 7–18. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Pullulan production by Aureobasidium pullulans grown on corn steep solids as a nitrogen source. Microbios 1997, 92, 171–181. [Google Scholar]
- Rho, D.; Mulchandani, A.; Luong, J.H.T.; LeDuy, A. Oxygen requirement in pullulan fermentation. Appl. Microbiol. Biotechnol. 1988, 28, 361–366. [Google Scholar] [CrossRef]
- Zheng, W.; Campbell, B.S.; McDougall, B.M.; Seviour, R.J. Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate. Bioresour. Technol. 2008, 99, 7480–7486. [Google Scholar] [CrossRef]
- Sheng, L.; Liu, C.; Tong, Q.; Ma, M. Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production. Carbohydr. Polym. 2015, 134, 333–336. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.-Q.; Liu, N.-N.; Liu, G.-L.; Chi, Z.; Chi, Z.-M. A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2017, 95, 539–549. [Google Scholar] [CrossRef]
- Chen, T.-J.; Liu, G.-L.; Wei, X.; Wang, K.; Huc, Z.; Chi, Z.; Chi, Z.-M. A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2020, 150, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, G.-L.; Jia, S.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr. Polym. 2021, 251, 117076. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-K.; Yang, H.-J.; Choi, N.-S.; Ahn, K.-H.; Park, C.-S.; Yoon, B.-D.; Kim, M.-S. Production of pure β-glucan by Aureobasidium pullulans after pullulan synthetase gene disruption. Biotechnol. Lett. 2010, 32, 137–142. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, J.; Zhang, L.; Diao, M.; Ling, P.; Wang, F. Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans. Int. J. Biol. Macromol. 2021, 177, 252–260. [Google Scholar] [CrossRef]
- Pollock, T.J.; Thorne, L.; Armentrout, R.W. Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 1992, 58, 877–883. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Polysaccharide production by a reduced pigmentation mutant of the fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 1993, 113, 345–349. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Wei, G.; Dong, Y. Media optimization for elevated molecular weight and mass production of pigment-free pullulan. Carbohydr. Polym. 2012, 89, 928–934. [Google Scholar] [CrossRef]
- Schuster, R.; Wenzig, E.; Mersmann, A. Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl. Microbiol. Biotechnol. 1993, 39, 155–158. [Google Scholar] [CrossRef]
- Youssef, F.; Roukas, T.; Biliaderis, C.G. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 1999, 34, 355–366. [Google Scholar] [CrossRef]
- Seo, H.-P.; Chung, C.-H.; Kim, S.-K.; Gross, R.A.; Kaplan, D.L.; Lee, J.-W. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100-L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 2004, 14, 237–242. [Google Scholar]
- Seo, H.-P.; Jo, K.-I.; Son, C.-W.; Yang, J.-K.; Chung, C.-H.; Nam, S.-W.; Lee, J.-W. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 2006, 16, 347–380. [Google Scholar]
- Gniewosz, M.; Duszkiewicz-Reinhard, W. Comparative studies on pullulan synthesis, melanin synthesis and morphology of white mutant Aureobasidium pullulans B-1 and parent strain A.p.-3. Carbohydr. Polym. 2008, 72, 431–438. [Google Scholar] [CrossRef]
- Gniewosz, M.; Kraśniewska, K.; Synowiec, A. The effect of agitation on pullulan production by a white mutant Aureobasidium pullulans B-1 in batch culture. Electron. J. Pol. Agric. 2013, 16, #03. [Google Scholar]
- Li, B.-X.; Zhang, N.; Peng, Q.; Yin, T.; Guan, F.-F.; Wang, G.-L.; Li, Y. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl. Microbiol. Biotechnol. 2009, 84, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, N.-N.; Liu, G.-L.; Chi, Z.; Wang, J.-M.; Zhang, L.-L.; Chi, Z.-M. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles 2016, 20, 567–577. [Google Scholar] [CrossRef]
- Gaur, R.; Singh, R. Optimization of physico-chemical and nutritional parameters for pullulan production by a mutant of Aureobasidium pullulans in a fed batch fermentation process. Afr. J. Biotechnol. 2010, 9, 7322–7330. [Google Scholar]
- Moscovici, M.; Ionescu, C.; Oniscu, C.; Fotea, O.; Hanganu, L.D. Exopolysaccharide biosynthesis by a fast-producing strain of Aureobasidium pullulans. Biotechnol. Lett. 1993, 15, 1167–1172. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Elevated polysaccharide production by mutants of the fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 1994, 124, 167–172. [Google Scholar] [CrossRef]
- West, T.P.; Strohfus, B. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1. Lett. Appl. Microbiol. 2001, 33, 169–172. [Google Scholar] [CrossRef]
- Tarabasz-Szymafiska, L.; Galas, E. Two-step mutagenesis of Pullularia pullulans leading to clones producing pure pullulan with high yield. Enzyme Microb. Technol. 1993, 15, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-X.; Chen, X.-J.; Chen, W.-R.; Li, M.-S.; Fang, Y.; Li, D.-S.; Ren, Y.-Z.; Liu, D.-Q. Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochem. 2011, 46, 792–795. [Google Scholar] [CrossRef]
- Singh, R.S.; Saini, G.K. Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour. Technol. 2008, 99, 3896–3899. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohydr. Polym. 2009, 78, 89–94. [Google Scholar] [CrossRef]
- Singh, R.S.; Singh, H.; Saini, G.K. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl. Biochem. Biotechnol. 2009, 152, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan production in stir tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. Carbohydr. Polym. Technol. Appl. 2021, 2, 100086. [Google Scholar]
- Yadav, K.L.; Rahi, D.K.; Soni, S.K. An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: Influence of fermentation conditions on exopolysaccharide (EPS) production. Appl. Biochem. Biotechnol. 2014, 172, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Kennedy, J.F.; Khodaiyan, F.; Mousavi, Z.; Hosseini, S.S. Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans. Int. J. Biol. Macromol. 2019, 138, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhong, H.; Gao, J.; Song, H.; Bai, W. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06. Front. Bioeng. Biotechnol. 2023, 11, 1131875. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, Y.; Zhang, G.; Liu, H.; Wei, Y.; Wang, P.; Wang, F.; Xian, M.; Xiang, H.; Zhang, H. Optimization and characterization of pullulan production by a newly isolated high-yielding strain Aureobasidium melanogenum. Prep. Biochem. Biotechnol. 2019, 49, 557–566. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Fu, W.-J.; Liu, G.-L.; Wang, Z.-P.; Chi, Z.-M. High level pullulan production by Aureobasidium pullulans var. melanogenum P16 isolated from mangrove system. Appl. Microbiol. Biotechnol. 2014, 98, 4865–4873. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chi, Z.; Liu, G.-L.; Xue, S.-J.; Wang, Z.-P.; Chi, Z.-M. Improved pullulan production by a mutant of Aureobasidium melanogenum TN3-1 from a natural honey and capsule shell preparation. Int. J. Biol. Macromol. 2019, 141, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Q.; Lin, J.; Zhou, Q.-Z.; Peng, J.; Zhang, Q.; Wang, J.-H. Hyper-production of pullulan by a novel fungus of Aureobasidium melanogenum ZH27 through batch fermentation. Int. J. Mol. Sci. 2024, 25, 319. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, S.; Chen, L.; Zhou, Q.; Qui, J.; Xin, X.; Zhang, Y.; Yuan, W.; Tian, C.; Yang, J.; et al. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans. Carbohydr. Polym. 2023, 302, 120426. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, X.-T.; Wu, Y.-N.; Zhang, X.-L.; Zhang, G.-C.; Wang, C.-L.; Zou, X.; Wang, D.-H.; Wei, G.-Y. MAL31, a sugar transporter involved in pullulan biosynthesis in Aureobasidium pullulans. J. Biotechnol. 2022, 359, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.R.; Saluja, P.; Prasad, G.S. Pullulan production by an osmotolerant Aureobasidium pullulans RBF-4A# isolated from flowers of Caesulia axillaris. Carbohydr. Polym. 2011, 83, 1547–1552. [Google Scholar]
- Xue, S.-J.; Chen, L.; Jiang, H.; Liu, G.-L.; Chi, Z.-M.; Hu, Z.; Chi, Z. High pullulan biosynthesis from high concentration of glucose by a hyperosmotic resistant, yeast-like fungal strain isolated from a natural comb-honey. Food Chem. 2019, 286, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, J.; Su, Y.; Zhu, Z.; Zhang, G.; Zhao, H.; Liu, H.; Yang, Y.; Nian, R.; Zhang, H.; et al. Pullulan production from synthetic medium by a new mutant of Aureobasidium pullulans. Prep. Biochem. Biotechnol. 2017, 47, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.-N.; Chi, Z.; Liu, G.-L.; Chen, T.-J.; Jiang, H.; Hu, Z.; Chi, Z.-M. α-Amylase, glucoamylase and isopullulanase determine molecular weight of pullulan produced by Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2018, 117, 727–734. [Google Scholar] [CrossRef]
- West, T.P.; Strohfus, B. A pullulan-degrading enzyme activity of Aureobasidium pullulans. J. Basic Microbiol. 1996, 36, 123–126. [Google Scholar] [CrossRef]
- Cruz-Santos, M.M.; Fernandes Antunes, F.A.; Gabriel Leda Arruda, G.A.; Shibukawa, V.P.; Prado, C.A.; Ortiz-Silos, N.; Castro-Alonso, M.J.; Marcelino, P.R.F.; Santos, J.C. Production and applications of pullulan from lignocellulosic biomass: Challenges and perspectives. Bioresour. Technol. 2023, 385, 129460. [Google Scholar] [CrossRef] [PubMed]
- West, T.P. Fungal production of the polysaccharide pullulan from a plant hydrolysate. Z. Naturforsch. C 2017, 72, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.E., II; West, T.P. Effect of yeast extract addition to a mineral salts medium containing hydrolyzed plant xylan on fungal pullulan production. Z. Naturforsch. C 2018, 73, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, J.; Li, F.; Liu, M.; Zhang, X.; Guo, X.; Xiao, D. Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH control and DL-dithiothreitol addition. Biotechnol. Bioprocess Eng. 2014, 19, 282–284. [Google Scholar] [CrossRef]
- Tagne, R.F.T.; Cruz-Santos, M.M.; Fernandes-Antunes, F.A.; Shibukawa, V.P.; Miano, S.B.; Kenfack, J.A.A.; da Silva, S.S.; Ngomade, S.B.L.; Santos, J.C. Pullulan production from sugarcane bagasse hemicellulosic hydrolysate by Aureobasidium pullulans ATCC 42023 in bubble column reactor. Fermentation 2024, 10, 322. [Google Scholar] [CrossRef]
- Wang, D.; Ju, X.; Zhou, D.; Wei, G. Efficient production of pullulan using rice hull hydrolysate by adaptive evolution of Aureobasidium pullulans. Bioresour. Technol. 2014, 164, 12–19. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; Zhang, Z.; Wang, C.; Wang, D.; Wei, G. Whole-crop refinery of crop biomass for pullulan production by Aureobasidium pullulans. Bioresour. Technol. 2023, 370, 128517. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, X.; Chen, C.; Chi, Z.; Zhang, Y.; Cui, Q.; Chia, Z.; Liu, Y.-J. Robust production of pigment-free pullulan from lignocellulosic hydrolysate by a new fungus co-utilizing glucose and xylose. Carbohydr. Polym. 2020, 241, 116400. [Google Scholar] [CrossRef]
Species | Strain | Carbon Source (%, w/v) | Growth Conditions | Maximum Pullulan (g/L) | Reference |
---|---|---|---|---|---|
A. pullulans | RG-5 | Glucose (4%) | 96 h, 42 °C | 25.5 | [77] |
A. pullulans | ICCF-68 | Glucose (8%) | 48 h, 28 °C | 50.2 | [78] |
A. pullulans | NYS-1 | Sucrose (2.5%) | 168 h, 30 °C | 14.9 | [79] |
A. pullulans | DG-1 | Sucrose (2.5%) | 168 h, 30 °C | 17.7 | [79] |
A. pullulans | NYSRP-1 | Sucrose (5%) | 168 h, 30 °C | 20.0 | [80] |
A. pullulans | M-uncol | Sucrose (25%) | 96 h, 28 °C | 67.0 | [81] |
A. pullulans | F3-2 | Hydrolyzed Starch (5%) | 72 h, 28 °C | 20.7 | [82] |
A. pullulans | MTCC 6994 | Sucrose (5%,) | 168 h, 30 °C | 23.1 | [83,84,85,86] |
A. pullulans | RYLF-10 | Sucrose (5%) | 168 h, 28 °C | 45.2 | [87,88] |
A. pullulans | BL06ΔPMA | Sucrose (6%) | 120 h, 28 °C | 140.0 | [89] |
A. melanogenum | P16 | Sucrose (12%) | 120 h, 28 °C | 67.4 | [90] |
A. melanogenum | AMY-PKS-11 | Sucrose (14%) | 96 h, 28 °C | 103.5 | [91] |
A. melanogenum | A4 | Glucose (16.3%) & Maltose (38.7%) | 120 h, 30 °C | 122.3 | [92] |
A. melanogenum | ZH27 | Sucrose (15%) | 132 h, 28 °C | 115.4 | [93] |
Species | Strain | Carbon Source (%, w/v) | Growth Conditions | Maximum Pullulan (g/L) | Reference |
---|---|---|---|---|---|
A. pullulans | M233-20 | Glucose (20%) | 144 h, 28 °C | 162.3 | [94] |
A. pullulans | Mal31 | Glucose (5%) | 72 h, 30 °C | 27.0 | [95] |
A. pullulans | RBF-4A3 | Sucrose (15%) | 96 h, 30 °C | 66.79 | [96] |
A. melanogenum | TN3-1 | Glucose (14%) | 120 h, 28 °C | 110.3 | [97] |
Strain | Hemicellulosic Hydrolysate | Growth Conditions | Maximum Pullulan (g/L) | Reference |
---|---|---|---|---|
AY82 | Sugarcane bagasse | 168 h, 28 °C | 17.63 | [104] |
ATCC 42023 | Sugarcane Bagasse | 120 h, 28 °C | 28.62 | [105] |
ARH-1 | Rice hull | 48 h, 30 °C | 22.20 | [106] |
EV6 | Corncob | 72 h, 30 °C | 21.75 | [107] |
EV6 | Corn straw | 72 h, 30 °C | 20.25 | [107] |
TN2-1-2 | Wheat straw | 120 h, 28 °C | 55.10 | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
West, T.P. Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan. Polysaccharides 2024, 5, 305-319. https://doi.org/10.3390/polysaccharides5030020
West TP. Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan. Polysaccharides. 2024; 5(3):305-319. https://doi.org/10.3390/polysaccharides5030020
Chicago/Turabian StyleWest, Thomas P. 2024. "Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan" Polysaccharides 5, no. 3: 305-319. https://doi.org/10.3390/polysaccharides5030020
APA StyleWest, T. P. (2024). Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan. Polysaccharides, 5(3), 305-319. https://doi.org/10.3390/polysaccharides5030020