Enhancing Gelatine Hydrogel Robustness with Sacran-Aldehyde: A Natural Cross-Linker Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental
2.2.1. Preparation of Sacran Aldehyde
2.2.2. Preparation of Gelatine Solution
2.2.3. Syntheses of Cross-Linked Hydrogels
2.2.4. Measurement of Mechanical Properties of Hydrogels
2.2.5. Measurement of Swelling Degree of Hydrogels
- q: swelling degree
- Ws: weight of swelled gel
- Wd: weight of dried crosslinked film
2.2.6. Scanning Electron Microscopy
2.3. Characterization of Pure Sacran, Sacran Aldehyde and Gelatine
2.3.1. Molecular Weight Estimation Using SEC-MALLS
2.3.2. Characterization of Cross-Linked Hydrogels
3. Results and Discussion
3.1. Formation of Sacran Aldehyde
3.2. Cross-Linking of Hydrogels
3.3. Effective Cross-Linking
3.4. Degree of Swelling
3.5. Mechanical Properties
3.6. Morphology of Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Panda, P.K.; Sadeghi, K.; Seo, J. Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag. Shelf Life 2022, 33, 100904. [Google Scholar] [CrossRef]
- Laquerbe, S.; Sayed, J.E.; Lorthioir, C.; Meyer, C.; Narita, T.; Ducouret, G.; Perrin, P.; Sanson, N. Supramolecular Crosslinked Hydrogels: Similarities and Differences with Chemically Crosslinked Hydrogels. Macromolecules 2023, 56, 7406–7418. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Z. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2021, 2, e21. [Google Scholar] [CrossRef]
- Zowada, R.; Foudazi, R. Macroporous Hydrogels for Soil Water Retention in Arid and Semi-Arid Regions. RSC Appl. Polym. 2023, 1, 243–253. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Moon, S.E.; Kim, J.H.; Kang, S.M. Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long-Term Stability. Nano-Micro Lett. 2023, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Okeyoshi, K.; Yusof, F.A.A.; Mitsumata, T.; Okajima, M.K.; Kaneko, T. Interfacial self-assembly of polysaccharide rods and platelets bridging over capillary lengths. J. Colloid Interface Sci. 2021, 591, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Okeyoshi, K.; Mitsumata, T.; Kaneko, T. Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. J. Colloid Interface Sci. 2019, 546, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Okeyoshi, K.; Okajima, M.K.; Kaneko, T. Directional control of diffusion and swelling in megamolecular polysaccharide hydrogels. Soft Matter 2016, 12, 5515–5518. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Le, T.T.N.; Nguyen, A.T.; Le, H.N.T.; Pham, T.T. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef] [PubMed]
- Tkaczewska, J.; Wielgosz, M.; Kulawik, P.; Zajac, M. The effect of drying temperature on the properties of gelatin from carps (Cyprinus carpio) skin. Czech J. Food Sci. 2019, 37, 246–251. [Google Scholar] [CrossRef]
- Rashid, T.U.; Sharmeen, S.; Biswas, S.; Ahmed, T.; Mallik, A.K.; Shahruzzaman, M.; Sakib, M.N.; Haque, P.; Rahman, M.M. Gelatin-Based Hydrogels BT. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–41. [Google Scholar] [CrossRef]
- Ahmady, A.; Abu Samah, N.H. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int. J. Pharm. 2021, 608, 121037. [Google Scholar] [CrossRef]
- Ali, M.A.; Singh, M.; Zhang, S.; Kaneko, D.; Okajima, M.K.; Kaneko, T. Metal-Assisted Injection Spinning of Ultra Strong Fibers from Megamolecular LC Polysaccharides. Polymers 2024, 16, 1099. [Google Scholar] [CrossRef] [PubMed]
- Okajima-Kaneko, M.; Ono, M.; Kabata, K.; Kaneko, T. Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure Appl. Chem. 2007, 79, 2039–2046. [Google Scholar] [CrossRef]
- Okajima, M.K.; Sornkamnerd, S.; Kaneko, T. Development of Functional Bionanocomposites Using Cyanobacterial Polysaccharides. Chem. Rec. 2018, 18, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Okajima, M.K.; Bamba, T.; Kaneso, Y.; Hirata, K.; Fukusaki, E.; Kajiyama, S.; Kaneko, T. Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydrogels. Macromolecules 2008, 41, 4061–4064. [Google Scholar] [CrossRef]
- Okajima, M.K.; Kaneko, D.; Mitsumata, T.; Kaneko, T.; Watanabe, J. Cyanobacteria That Produce Megamolecules with Efficient Self-Orientations. Macromolecules 2009, 42, 3057–3062. [Google Scholar] [CrossRef]
- Takada, K.; Komuro, A.; Ali, M.A.; Singh, M.; Okajima, M.; Matsumura, K.; Kaneko, T. Cell-adhesive gels made of sacran/collagen complexes. Polym. J. 2022, 54, 581–589. [Google Scholar] [CrossRef]
- Budpud, K.; Okeyoshi, K.; Okajima, M.K.; Kaneko, T. Cyanobacterial supra-polysaccharide: Self-similar hierarchy, diverse morphology, and application prospects of sacran fibers. Biopolymers 2022, 113, e23522. [Google Scholar] [CrossRef]
- Singh, M.; Joshi, G.; Qiang, H.; Okajima, M.K.; Kaneko, T. Facile design of antibacterial sheets of sacran and nanocellulose. Carbohydr. Polym. Technol. Appl. 2023, 5, 100280. [Google Scholar] [CrossRef]
- Singh, M.; Joshi, G.; Qiang, H.; Okajima, M.K.; Kaneko, T. Dataset for Sac/CNF-Ag nanocomposite for antibacterial properties. Data Brief 2023, 48, 109093. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Edgar, K.J. Polysaccharide Aldehydes and Ketones: Synthesis and Reactivity. Biomacromolecules 2024, 25, 2261–2276. [Google Scholar] [CrossRef] [PubMed]
- Hyon, W.; Hyon, S.-H.; Matsumura, K. Evaluation of the optimal dose for maximizing the anti-adhesion performance of a self-degradable dextran-based material. Carbohydr. Polym. Technol. Appl. 2022, 4, 100255. [Google Scholar] [CrossRef]
- Nonsuwan, P.; Matsumura, K. Amino-Carrageenan@Polydopamine Microcomposites as Initiators for the Degradation of Hydrogel by near-Infrared Irradiation for Controlled Drug Release. ACS Appl. Polym. Mater. 2019, 1, 286–297. [Google Scholar] [CrossRef]
- Matsumura, K.; Rajan, R. Oxidized Polysaccharides as Green and Sustainable Biomaterials. Curr. Org. Chem. 2021, 25, 1483–1496. [Google Scholar] [CrossRef]
- Hyon, W.; Shibata, S.; Ozaki, E.; Fujimura, M.; Hyon, S.-H.; Matsumura, K. Elucidating the degradation mechanism of a self-degradable dextran-based medical adhesive. Carbohydr. Polym. 2022, 278, 118949. [Google Scholar] [CrossRef]
- Hyon, S.-H.; Nakajima, N.; Sugai, H.; Matsumura, K. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-l-lysine. J. Biomed. Mater. Res. Part A 2014, 102, 2511–2520. [Google Scholar] [CrossRef]
- Nonsuwan, P.; Matsugami, A.; Hayashi, F.; Hyon, S.-H.; Matsumura, K. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr. Polym. 2019, 204, 131–141. [Google Scholar] [CrossRef]
- Plappert, S.F.; Quraishi, S.; Pircher, N.; Mikkonen, K.S.; Veigel, S.; Klinger, K.M.; Potthast, A.; Rosenau, T.; Liebner, F.W. Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties. Biomacromolecules 2018, 19, 2969–2978. [Google Scholar] [CrossRef]
- Heidarian, P.; Kouzani, A.Z. A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing. Carbohydr. Polym. 2023, 313, 120879. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. J. Agric. Food Chem. 2004, 52, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Amornwachirabodee, K.; Okajima, M.K.; Okeyoshi, K.; Kaneko, T. Oriented Polysaccharide Bigels from Interfacial Crosslinking. Chem. Lett. 2020, 49, 1484–1486. [Google Scholar] [CrossRef]
- Kale, R.N.; Bajaj, A.N. Ultraviolet Spectrophotometric Method for Determination of Gelatin Crosslinking in the Presence of Amino Groups. J. Young Pharm. 2010, 2, 90–94. [Google Scholar] [CrossRef]
- Panda, P.K.; Park, K.; Seo, J. Development of poly (vinyl alcohol)/regenerated chitosan blend film with superior barrier, antioxidant, and antibacterial properties. Prog. Org. Coat. 2023, 183, 107749. [Google Scholar] [CrossRef]
- Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.P.C.; Saraiva, J.N.; Cavaco, G.; Portela, R.P.; Leal, C.R.; Sobral, R.G.; Almeida, P.L. Crosslinked bacterial cellulose hydrogels for biomedical applications. Eur. Polym. J. 2022, 177, 111438. [Google Scholar] [CrossRef]
- Mattea, F.; Martín, Á. Supercritical drying of thermoresponsive gels based on N-isopropylacrylamide. J. Taiwan Inst. Chem. Eng. 2020, 110, 120–129. [Google Scholar] [CrossRef]
- Contessi Negrini, N.; Angelova Volponi, A.; Sharpe, P.T.; Celiz, A.D. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomater. Sci. Eng. 2021, 7, 4330–4346. [Google Scholar] [CrossRef]
Samples | ρ (mol/m3) | Abs (au) | Nnon-crosslink (10−6 mol/g) | N (10−7 mol/g) |
---|---|---|---|---|
PG | -- | 0.194 | 1.1 | -- |
GSDA 1 | 0.001526619 | 0.08 | 0.44 | 4.38 |
GSDA 1.5 | -- | 0.048 | 0.26 | -- |
GSDA 2 | 0.00176189 | 0.041 | 0.22 | 2.24 |
GSDA 3 | 0.001418368 | 0.039 | 0.21 | 2.13 |
Samples | σ (MPa) | E (GPa) | q (g/g) | ρ (10−3 mol/m3) | N (10−7 mol/g) |
---|---|---|---|---|---|
PG | 0.04 | 1.17 | -- | --- | -- |
GSDA1 | 0.06 | 1.65 | 0.70 | 1.53 | 4.38 |
GSDA1.5 | 0.07 | 1.95 | -- | -- | -- |
GSDA2 | 0.10 | 2.15 | 0.62 | 1.76 | 2.24 |
GSDA 3 | 0.14 | 2.19 | 0.49 | 1.42 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Debas, A.; Joshi, G.; Okajima, M.K.; Rajan, R.; Matsumura, K.; Kaneko, T. Enhancing Gelatine Hydrogel Robustness with Sacran-Aldehyde: A Natural Cross-Linker Approach. Polysaccharides 2024, 5, 320-331. https://doi.org/10.3390/polysaccharides5030021
Singh M, Debas A, Joshi G, Okajima MK, Rajan R, Matsumura K, Kaneko T. Enhancing Gelatine Hydrogel Robustness with Sacran-Aldehyde: A Natural Cross-Linker Approach. Polysaccharides. 2024; 5(3):320-331. https://doi.org/10.3390/polysaccharides5030021
Chicago/Turabian StyleSingh, Maninder, Alisha Debas, Gargi Joshi, Maiko Kaneko Okajima, Robin Rajan, Kazuaki Matsumura, and Tatsuo Kaneko. 2024. "Enhancing Gelatine Hydrogel Robustness with Sacran-Aldehyde: A Natural Cross-Linker Approach" Polysaccharides 5, no. 3: 320-331. https://doi.org/10.3390/polysaccharides5030021
APA StyleSingh, M., Debas, A., Joshi, G., Okajima, M. K., Rajan, R., Matsumura, K., & Kaneko, T. (2024). Enhancing Gelatine Hydrogel Robustness with Sacran-Aldehyde: A Natural Cross-Linker Approach. Polysaccharides, 5(3), 320-331. https://doi.org/10.3390/polysaccharides5030021