Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining the Samples
Obtaining Test Specimens
2.3. Material Characterization (FTIR and TG/DSC)
2.4. Physicochemical Characterization
3. Results and Discussion
3.1. FTIR Spectroscopy and Microscopy
3.2. Thermal Analyses
3.3. Physical–Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motelica, L.; Ficai, D.; Oprea, O.C.; Ficai, A.; Ene, V.L.; Vasile, B.S.; Andronescu, E.; Holban, A.M. Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil-Innovative Packaging for Cheese. Nanomaterials 2021, 11, 2377. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, E.; Bigi, F.; Maurizzi, E.; Karellou, E.I.E.; Pappas, C.S.; Quartieri, A.; Tsironi, T. Synthesis and characterization of polysaccharide- and protein-based edible films and application as packaging materials for fresh fish fillets. Sci. Rep. 2024, 14, 517. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S. Major factors affecting the characteristics of starch based biopolymer films. Eur. Polym. J. 2021, 160, 110788. [Google Scholar] [CrossRef]
- Cernencu, A.; Lungu, A.; Stancu, I.C.; Vasile, E.; Iovu, H. Polysaccharide-Based 3D Printing Inks Supplemented with Additives. Univ. Politeh. Buchar. 2019, 81, 175–186. [Google Scholar]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polymer 2022, 14, 1126. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Oprea, O.C.; Motelica, L.; Ficai, A.; Trusca, R.D.; Sonmez, M.; Nituica, M.; Georgescu, M. Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch. J. Compos. Sci. 2024, 8, 134. [Google Scholar] [CrossRef]
- Siqueira, L.D.; Arias, C.I.L.; Maniglia, B.C.; Tadini, C.C. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food Sci. 2021, 38, 122–130. [Google Scholar] [CrossRef]
- Adewale, P.; Yancheshmeh, M.S.; Lam, E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohyd. Polym. 2022, 291, 119590. [Google Scholar] [CrossRef]
- Jobling, S. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 2004, 7, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymer- 2023, 15, 3491. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Singhal, S.; Godiya, C.B.; Kumar, S. Prospects and Applications of Starch based Biopolymers. Int. J. Environ. an Ch 2023, 103, 6907–6926. [Google Scholar] [CrossRef]
- Caldonazo, A.; Almeida, S.L.; Bonetti, A.F.; Lazo, R.E.L.; Mengarda, M.; Murakami, F.S. Pharmaceutical applications of starch nanoparticles: A scoping review. Int. J. Biol. Macromol. 2021, 181, 697–704. [Google Scholar] [CrossRef]
- Le Corre, D.; Bras, J.; Dufresne, A. Starch Nanoparticles: A Review. Biomacromolecules 2010, 11, 1139–1153. [Google Scholar] [CrossRef]
- Skowronska, D.; Wilpiszewska, K. Deep Eutectic Solvents for Starch Treatment. Polymers 2022, 14, 220. [Google Scholar] [CrossRef]
- Montilla-Buitrago, C.E.; Gómez-López, R.A.; Solanilla-Duque, J.F.; Serna-Cock, L.; Villada-Castillo, H.S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. Starch-Starke 2021, 73, 2100060. [Google Scholar] [CrossRef]
- Alee, M.; Duan, Q.F.; Chen, Y.; Liu, H.S.; Ali, A.; Zhu, J.; Jiang, T.Y.; Rahaman, A.; Chen, L.; Yu, L. Plasticization Efficiency and Characteristics of Monosaccharides, Disaccharides, and Low-Molecular-Weight Polysaccharides for Starch-Based Materials. ACS Sustain. Chem. Eng. 2021, 9, 11960–11969. [Google Scholar] [CrossRef]
- Nykänen, V.P.S.; Härkönen, O.; Nykänen, A.; Hiekkataipale, P.; Ruokolainen, J.; Ikkala, O. An efficient and stable star-shaped plasticizer for starch: Cyclic phosphazene with hydrogen bonding aminoethoxy ethanol side chains. Green. Chem. 2014, 16, 4339–4350. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.G.; Ma, X.F.; Wu, Y. The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohyd. Polym. 2007, 67, 446–453. [Google Scholar]
- Carvalho, A.J.F.; Zambon, M.D.; Curvelo, A.A.D.; Gandini, A. Thermoplastic starch modification during melt processing: Hydrolysis catalyzed by carboxylic acids. Carbohyd. Polym. 2005, 62, 387–390. [Google Scholar] [CrossRef]
- Moscicki, L.; Mitrus, M.; Wójtowicz, A.; Oniszczuk, T.; Rejak, A.; Janssen, L. Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res. Int. 2012, 47, 291–299. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Ashogbon, A.O.; Kumar, M. Recent advances in thermoplastic starches for food packaging: A review. Food Packag. Shelf 2021, 30, 100743. [Google Scholar] [CrossRef]
- Liu, H.S.; Xie, F.W.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Laurindo, J.B.; Yamashita, F. Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohyd. Polym. 2012, 89, 504–510. [Google Scholar] [CrossRef]
- De Azeredo, H.M.C. Nanocomposites for food packaging applications. Food Res. Int. 2009, 42, 1240–1253. [Google Scholar] [CrossRef]
- Aouada, F.A.; Mattoso, L.H.C.; Longo, E. New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Ind. Crop Prod. 2011, 34, 1502–1508. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Picard, E.; Vermogen, A.; Gerard, J.F.; Espuche, E. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state—Consequences on modelling. J. Membr. Sci. 2007, 292, 133–144. [Google Scholar] [CrossRef]
- Chi, Y.; Maitland, E.; Pascall, M.A. The effect of citric acid concentrations on the mechanical, thermal, and structural properties of starch edible films. Int. J. Food Sci. Technol. 2024, 59, 1801–1813. [Google Scholar] [CrossRef]
- Tharanathan, R.N. Starch-value addition by modification. Crit. Rev. Food Sci. 2005, 45, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Hazrol, M.D.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M.; Wahab, N.I.A. Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol. Polymers 2021, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Khorasani, S.N.; Dinari, M.; Khalili, S. Mechanical and barrier properties of LLDPE/TPS/OMMT packaging film in the presence of POE-g-IA or POE-g-MA. J. Polym. Res. 2021, 28, 133. [Google Scholar] [CrossRef]
- Nituica, M.; Oprea, O.; Stelescu, M.D.; Sonmez, M.; Georgescu, M.; Alexandrescu, L.; Motelica, L. Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture. Materials 2023, 16, 5279. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Kuzniar, P.; Kowalczewski, P.L.; Bobel, I. An Insight into Pasting and Rheological Behavior of Potato Starch Pastes and Gels with Whole and Ground Chia Seeds. Gels 2022, 8, 598. [Google Scholar] [CrossRef]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Method. 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- ISO 868; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003. Available online: https://standards.iteh.ai/catalog/standards/sist/b00a2780-f641-4857-8bb1-eb0d574b4af3/iso-868-2003 (accessed on 5 March 2024).
- ASTM-D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://cdn.standards.iteh.ai/samples/90583/526a83abb7544d49ac1a1a36382859fe/ASTM-D638-14.pdf (accessed on 1 August 2024).
- Fonseca-García, A.; Osorio, B.H.; Aguirre-Loredo, R.Y.; Calambas, H.L.; Caicedo, C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohyd. Polym. 2022, 293, 119744. [Google Scholar] [CrossRef]
- Caicedo, C.; Pulgarin, H.L.C. Study of the Physical and Mechanical Properties of Thermoplastic Starch/Poly(Lactic Acid) Blends Modified with Acid Agents. Processes 2021, 9, 578. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.C.; Trusca, R.D.; Ficai, A.; Stelescu, M.D.; Sonmez, M.; Nituica, M.; Mustatea, G.; Holban, A.M. Antimicrobial Packaging for Plum Tomatoes Based on ZnO Modified Low-Density Polyethylene. Int. J. Mol. Sci. 2024, 25, 6073. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agr. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Mano, J.F.; Koniarova, D.; Reis, R.L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. Med. 2003, 14, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Paluch, M.; Ostrowska, J.; Tynski, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022, 30, 728–740. [Google Scholar] [CrossRef]
- Sankri, A.; Arhaliass, A.; Dez, I.; Gaumont, A.C.; Grohens, Y.; Lourdin, D.; Pillin, I.; Rolland-Sabaté, A.; Leroy, E. Thermoplastic starch plasticized by an ionic liquid. Carbohyd. Polym. 2010, 82, 256–263. [Google Scholar] [CrossRef]
- Park, J.W.; Im, S.S.; Kim, S.H.; Kim, Y.H. Biodegradable polymer blends of Poly(L-lactic acid) and gelatinized starch. Polym. Eng. Sci. 2000, 40, 2539–2550. [Google Scholar] [CrossRef]
- Seligra, P.G.; Jaramillo, C.M.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohyd. Polym. 2016, 138, 66–74. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Z.Z.; Liu, Q.Y.; Han, Y.M.; Zhang, L.Q.; Chen, D.F.; Tian, W. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohyd. Polym. 2007, 69, 748–755. [Google Scholar] [CrossRef]
- Sukkaneewat, B.; Panrot, T.; Rojruthai, P.; Wongpreedee, T.; Prapruddivongs, C. Plasticizing effects from citric acid/palm oil combinations for sorbitol-crosslinked starch foams. Mater. Chem. Phys. 2022, 278, 125732. [Google Scholar] [CrossRef]
- Marin, D.C.; Vecchio, A.; Ludueña, L.N.; Fasce, D.; Alvarez, V.A.; Stefani, P.M. Revalorization of Rice Husk Waste as a Source of Cellulose and Silica. Fiber Polym. 2015, 16, 285–293. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Tournois, H.; de Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohyd. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Zhang, M.N.; Wang, J.; Chen, Z.G. Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles. Food Hydrocolloid 2022, 131, 107802. [Google Scholar] [CrossRef]
- Gómez-López, R.A.; Montilla-Buitrago, C.E.; Villada-Castillo, H.S.; Sáenz-Galindo, A.; Avalos-Belmontes, F.; Serna-Cock, L. Co-Plasticization of Starch with Glycerol and Isosorbide: Effect on Retrogradation in Thermo-Plastic Cassava Starch Films. Polymers 2023, 15, 2104. [Google Scholar] [CrossRef]
- Capron, I.; Robert, P.; Colonna, P.; Brogly, M.; Planchot, V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohyd. Polym. 2007, 68, 249–259. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR-ATR, NMR, XRD and DSC study. Carbohyd. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Nhouchi, Z.; Botosoa, E.P.; Chèné, C.; Karoui, R. Mid infrared as a tool to study the conformational structure of starch and proteins with oil addition during gelatinization. LWT Food Sci. Technol. 2022, 157, 113093. [Google Scholar] [CrossRef]
- Gebresas, G.A.; Szabó, T.; Marossy, K. A comparative study of carboxylic acids on the cross-linking potential of corn starch films. J. Mol. Struct. 2023, 1277, 134886. [Google Scholar] [CrossRef]
- Kohyama, K.; Matsuki, J.; Yasui, T.; Sasaki, T. A differential thermal analysis of the gelatinization and retrogradation of wheat starches with different amylopectin chain lengths. Carbohyd. Polym. 2004, 58, 71–77. [Google Scholar] [CrossRef]
- Lara, S.C.; Salcedo, F. Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites plasticized with different glycerol/water ratios. Carbohyd. Polym. 2016, 151, 206–212. [Google Scholar] [CrossRef]
- Arroyo, O.H.; Huneault, M.A.; Favis, B.D.; Bureau, M.N. Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites. Polym. Compos. 2010, 31, 114–127. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers 2015, 7, 1106–1124. [Google Scholar] [CrossRef]
- Zolek-Tryznowska, Z.; Kaluza, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials 2021, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci. 2006, 71, R107–R116. [Google Scholar] [CrossRef]
- Majdzadeh-Ardakani, K.; Navarchian, A.H.; Sadeghi, F. Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohyd. Polym. 2010, 79, 547–554. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Yu, Z.Z.; Xie, X.L.; Naito, K.; Kagawa, Y. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 2007, 48, 7193–7200. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.X.; Han, N.; Bai, S.H. Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohyd. Polym. 2009, 76, 68–73. [Google Scholar] [CrossRef]
- Cyras, V.P.; Manfredi, L.B.; Ton-That, M.T.; Vázquez, A. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd. Polym. 2008, 73, 55–63. [Google Scholar] [CrossRef]
- Park, H.M.; Lee, W.K.; Park, C.Y.; Cho, W.J.; Ha, C.S. Environmentally friendly polymer hybrids—Part I—Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci. 2003, 38, 909–915. [Google Scholar] [CrossRef]
No. | Material | Producer | Role | Characteristics |
---|---|---|---|---|
1 | Soluble starch obtained from potatoes | Lach-Ner, Neratovice Czech Republic | Polymer matrix | Substance insoluble in water 0.28%, loss on drying (at 105 °C) 17.52% |
2 | Glycerin | Lach-Ner | Plasticizer | Acidity 0.02%, density 1.26 g/cm3 |
3 | Sorbitol | Thermo Scientific, Czech Republic | Plasticizer | D-Sorbitol 97% |
4 | Anhydrous citric acid | Reanal Laborvegyszer Kft., Budapest, Hungary | Compatibility agent | C8H8O7, molecular mass of 192.13 g/mol, purity 99.8%, 9.8%, sulphate ash < 0.02%, chlorides (Cl) < 0.0005%, sulphates (SO4) < 0.02%, oxalates (C2O4) < 0.05% |
5 | Nanoclay, surface modified, Nanomer 31PS | Sigma-Aldrich, St. Louis, MA, USA | Nanofiller | Contains 0.5–5 wt.% aminopropyl-triethoxysilane, 15–35 wt.% octadecyl-amine, matrix: montmorillonite clay base material, size < 20 micron |
6 | Genioplast Pellet P Plus | Wacker Chemie AG, Munich, Germany | Additive | Ultrahigh molecular weight siloxane polymer 70% and fumed silica 30% |
Ingredients | Sample Code | |||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
Starch (g) | 70 | 70 | 70 | 70 | 60 | 60 | 60 | 60 |
Glycerine (g) | 30 | 30 | 30 | 30 | 20 | 20 | 20 | 20 |
Sorbitol (g) | - | - | - | - | 20 | 20 | 20 | 20 |
Citric acid (g) | - | 2 | 2 | 2 | - | 2 | 2 | 2 |
OMMT (g) | - | - | 2.1 | 2.1 | - | - | 1.8 | 1.8 |
Genioplast (g) | 2.1 | 1.8 |
Sample | I3300/I1150 | I1022/I995 | I1044/I1022 |
---|---|---|---|
S1 | 1.054 | 1.2163 | 0.9668 |
S2 | 1.013 | 1.0654 | 0.7222 |
S3 | 1.049 | 1.0645 | 0.7229 |
S4 | 0.930 | 1.1853 | 0.9079 |
S5 | 1.301 | 1.1526 | 1.1606 |
S6 | 1.233 | 0.9400 | 0.7655 |
S7 | 1.186 | 0.8224 | 1.0003 |
S8 | 1.230 | 0.7906 | 0.9176 |
Sample | T5% | T10% | Inflection | Δm (250 °C) | Endo | Exo | DTG Peak (°C) |
---|---|---|---|---|---|---|---|
S1 | 173 °C | 225 °C | 149.8 °C | 12.42% | 156.9 °C | 434.7 °C | 288.7sh/308.2 |
S2 | 168 °C | 217 °C | 147.1 °C | 15.58% | 155.5/165.4 °C | 436.3 °C | 272.6/312.8 |
S3 | 175 °C | 228 °C | 150.7 °C | 14.00% | 159.7/172.4 °C | 426.4 °C | 263.8sh/302.0 |
S4 | 179 °C | 242 °C | 158.2 °C | 11.63% | 172.8 °C | 499.3 °C | 266.3/290.1/296.9 |
S5 | 174 °C | 227 °C | 156.6 °C | 12.08% | 166.8 °C | 452.3 °C | 291.6/321.1 |
S6 | 176 °C | 218 °C | 162.9 °C | 15.46% | 168.2/181.4 °C | 410.6 °C | 298.7/308.8 |
S7 | 179 °C | 221 °C | 153.6 °C | 14.76% | 160.4/186.4 °C | 418.8 °C | 289.4/310.2/316.2 |
S8 | 179 °C | 222 °C | 151.7 °C | 14.80% | 157.4/179.6 °C | 505.5 °C | 286.0/294.1/308.6 |
Sample Code | Hardness | Hardness | Tensile Strength | Elongation at Break |
---|---|---|---|---|
° ShA | ° ShD | N/mm2 | % | |
S1 | 97 ± 0.577 | 46 ± 0.577 | 2.64 ± 0.096 | 140 ± 6.666 |
S2 | 96 ± 0.577 | 43 ± 0.577 | 5.17 ± 0.01 | 120 ± 11.547 |
S3 | 91 ± 0.577 | 32 ± 0.577 | 6.95 ± 0.186 | 60 ± 6.666 |
S4 | 87 ± 0.882 | 34 ± 0.577 | 2.84 ± 0.1 | 100 ± 5.773 |
S5 | 93 ± 0.577 | 39 ± 0.577 | 2.37 ± 0.255 | 100 ± 6.666 |
S6 | 90 ± 0.577 | 31 ± 0.577 | 4.21 ± 0.041 | 40 ± 4.409 |
S7 | 88 ± 0.577 | 29 ± 0.577 | 4.24 ± 0.035 | 40 ± 6.666 |
S8 | 86 ± 0.882 | 33 ± 0.577 | 4.22 ± 0.045 | 60 ± 6.666 |
Starch Type | Plasticizer | Obtaining Method | Tensile Strength N/mm2 | Elongation at Break, % | Ref. |
---|---|---|---|---|---|
Corn starch | glycerol (30% w/w) | Solution casting | 2.53 | 40 | [32] |
Corn starch | glycerol, sorbitol 1:1 (30% w/w) | Solution casting | 5.74 | 55 | [32] |
Corn starch | glycerol, sorbitol 1:1 (45% w/w) | Solution casting | 2.8 | 70 | [32] |
Sugar palm starch | glycerol, sorbitol 1:1 (45% w/w) | Solution casting | 3.99 | 39 | [62] |
Sugar palm starch | glycerol (30% w/w) | Solution casting | 2.5 | 61.6 | [62] |
Potato starch | glycerol (33% w/w) | Solution casting | 3.05 | 70 | [63] |
Rice starch | glycerol (33% w/w) | Solution casting | 1.8 | 49 | [63] |
Potato starch | glycerol (30% w/w) | Solution casting | 2.42 | 46.6 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelescu, M.D.; Oprea, O.-C.; Sonmez, M.; Ficai, A.; Motelica, L.; Ficai, D.; Georgescu, M.; Gurau, D.F. Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures. Polysaccharides 2024, 5, 504-522. https://doi.org/10.3390/polysaccharides5040032
Stelescu MD, Oprea O-C, Sonmez M, Ficai A, Motelica L, Ficai D, Georgescu M, Gurau DF. Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures. Polysaccharides. 2024; 5(4):504-522. https://doi.org/10.3390/polysaccharides5040032
Chicago/Turabian StyleStelescu, Maria Daniela, Ovidiu-Cristian Oprea, Maria Sonmez, Anton Ficai, Ludmila Motelica, Denisa Ficai, Mihai Georgescu, and Dana Florentina Gurau. 2024. "Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures" Polysaccharides 5, no. 4: 504-522. https://doi.org/10.3390/polysaccharides5040032
APA StyleStelescu, M. D., Oprea, O. -C., Sonmez, M., Ficai, A., Motelica, L., Ficai, D., Georgescu, M., & Gurau, D. F. (2024). Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures. Polysaccharides, 5(4), 504-522. https://doi.org/10.3390/polysaccharides5040032