Hydroxyethyl Starch, a Synthetic Colloid Used to Restore Blood Volume, Attenuates Shear-Induced Distortion but Accelerates the Convection of Sodium Hyaluronic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydraulic Conductivity of NaHA Solution
2.3. Dynamic Shear Moduli of NaHA Solutions during Shear Stress Loading
2.4. Convective Transport of FHA
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of HES on Hydraulic Conductivity (Κ) of NaHA Solution
3.2. Effects of HES on Dynamic Shear Moduli of NaHA Solution during Shear Stress Loading
3.3. Effects of HES on Convective Transport of FHA
3.4. Implications
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Levick, J.R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 1987, 72, 409–437. [Google Scholar] [CrossRef] [PubMed]
- Comper, W.D.; Laurent, T.C. Physiological function of connective tissue polysaccharides. Physiol. Rev. 1978, 58, 255–315. [Google Scholar] [CrossRef] [PubMed]
- Cowman, M.K.; Matsuoka, S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005, 340, 791–809. [Google Scholar] [CrossRef] [PubMed]
- Fouissac, E.; Milas, M.; Rinaudo, M. Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte. Macromolecules 1993, 26, 6945–6951. [Google Scholar] [CrossRef]
- Laurent, T.C. In vitro studies on the transport of macromolecules through the connective tissue. Fed. Proc. 1966, 25, 1128–1134. [Google Scholar] [PubMed]
- Laurent, T.C. Structure of the extracellular matrix and the biology of hyaluronan. In Interstitium, Connective Tissue and Lymphatics; Reed, R.K., McHale, N.G., Bert, J.L., Winlove, C.P., Laine, G.A., Eds.; Portland Press: London, UK, 1995; pp. 1–12. [Google Scholar]
- Levick, J.R. An Introduction to Cardiovascular Physiology, 5th ed.; Hodder Education: London, UK, 2010; pp. 188–219. [Google Scholar]
- Wiig, H.; Swartz, M.A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012, 92, 1005–1060. [Google Scholar] [CrossRef] [PubMed]
- Cowman, M.K.; Lee, H.-G.; Schwertfeger, K.L.; McCarthy, J.B.; Turley, E.A. The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.A.; Fleury, M.E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 2007, 9, 229–256. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.A.; Lund, A.W. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat. Rev. Cancer 2012, 12, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; James, M.F.M.; Kozek-Langenecker, S.; Stocker, R.; Guidet, B.; Van Aken, H. Hydroxyethyl starches: Different products—Different effects. Anesthesiology 2009, 111, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.E.; Woodcock, T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012, 108, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Kawata, M.; Kobayashi, Y.; Okamoto, A.; Nishinari, K. Effects of the addition of hyaluronate segments with different chain lengths on the viscoelasticity of hyaluronic acid solutions. Biopolymers 1996, 38, 583–591. [Google Scholar] [CrossRef]
- Kurata, M.; Tsunashima, Y. Viscosity—Molecular weight relationships and unperturbed dimensions of linear chain molecules. In Polymer Handbook, 4th ed.; Brandrup, J., Immergut, E.H., Grulke, E.A., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; pp. VII/1–VII/83. [Google Scholar]
- Gribbon, P.; Heng, B.C.; Hardingham, T.E. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching. Biophys. J. 1999, 77, 2210–2216. [Google Scholar] [CrossRef] [PubMed]
- Tatara, T. Contrasting effects of albumin and hydroxyethyl starch solutions on physical properties of sodium hyaluronate solution. Carbohydr. Polym. 2018, 201, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Tatara, T. Different effects of albumin and hydroxyethyl starch on low molecular-weight solute permeation through sodium hyaluronic acid solution. Polymers 2021, 13, 514. [Google Scholar] [CrossRef] [PubMed]
- Doi, M. Soft Matter Physics; Oxford University Press: Oxford, UK, 2018; pp. 137–164. [Google Scholar]
- Laurent, T.C.; Ogston, A.G. The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid. Biochem. J. 1963, 89, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2018; pp. 253–305. [Google Scholar]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef] [PubMed]
- Kosto, K.B.; Deen, W.M. Hindered convection of macromolecules in hydrogels. Biophys. J. 2005, 88, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K. Transport of molecules in the tumor interstitium: A review. Cancer Res. 1987, 47, 3039–3051. [Google Scholar] [PubMed]
- Chen, W.Y.; Abatangelo, G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999, 7, 79–89. [Google Scholar] [CrossRef] [PubMed]
Solvent | 0 h | 8 h | p Value 1 |
---|---|---|---|
0.15 M NaCl | 0.53 ± 0.04 | 0.82 ± 0.10 | <0.001 |
1% HES | 0.44 ± 0.02 * | 0.63 ± 0.03 ** | <0.001 |
2% HES | 0.41 ± 0.02 **, # | 0.44 ± 0.03 **, ## | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatara, T. Hydroxyethyl Starch, a Synthetic Colloid Used to Restore Blood Volume, Attenuates Shear-Induced Distortion but Accelerates the Convection of Sodium Hyaluronic Acid. Polysaccharides 2024, 5, 598-608. https://doi.org/10.3390/polysaccharides5040038
Tatara T. Hydroxyethyl Starch, a Synthetic Colloid Used to Restore Blood Volume, Attenuates Shear-Induced Distortion but Accelerates the Convection of Sodium Hyaluronic Acid. Polysaccharides. 2024; 5(4):598-608. https://doi.org/10.3390/polysaccharides5040038
Chicago/Turabian StyleTatara, Tsuneo. 2024. "Hydroxyethyl Starch, a Synthetic Colloid Used to Restore Blood Volume, Attenuates Shear-Induced Distortion but Accelerates the Convection of Sodium Hyaluronic Acid" Polysaccharides 5, no. 4: 598-608. https://doi.org/10.3390/polysaccharides5040038
APA StyleTatara, T. (2024). Hydroxyethyl Starch, a Synthetic Colloid Used to Restore Blood Volume, Attenuates Shear-Induced Distortion but Accelerates the Convection of Sodium Hyaluronic Acid. Polysaccharides, 5(4), 598-608. https://doi.org/10.3390/polysaccharides5040038