Can Chitosan Be Depolymerized by Thermal Shock?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Drying Kinetics
2.3. Characterization
2.3.1. Moisture Content
2.3.2. Hydrodynamic Particle Size
2.3.3. Viscosity Average Molecular Weight
2.3.4. X-Ray Diffraction
2.3.5. Degree of Deacetylation
2.3.6. Attenuated Total Reflection—Fourier-Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Characterization of Samples
3.2. Drying Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arantes, M.K.; Kugelmeier, C.L.; Cardozo-Filho, L.; Monteiro, M.R.; Oliveira, C.R.; Alves, H.J. Influence of the Drying Route on the Depolymerization and Properties of Chitosan. Polym. Eng. Sci. 2015, 9, 1969–1976. [Google Scholar] [CrossRef]
- Santos, J.E.D.; Soares, J.D.P.; Dockal, E.R.; Campana Filho, S.P.; Cavalheiro, É.T. Caracterização de Quitosanas Comerciais de Diferentes Origens. Polímeros 2003, 13, 242–249. [Google Scholar] [CrossRef]
- Harish Prashanth, K.V.; Tharanathan, R.N. Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Varum, K.M.; Ottoy, M.H.; Smidsrod, O. Acid Hydrolysis of Chitosans. Carbohydr. Polym. 2001, 46, 89–98. [Google Scholar] [CrossRef]
- Yang, G.; Lam, E.; Moores, A. Controlled Chitosan Molecular Weight Reduction by Mechanochemical and Aging-Based Phosphoric Acid Hydrolysis. ACS Sustain. Chem. Eng. 2023, 11, 7765–7774. [Google Scholar] [CrossRef]
- Poshina, D.N.; Raik, S.V.; Poshin, A.N.; Skorik, Y.A. Accessibility of Chitin and Chitosan in Enzymatic Hydrolysis: A Review. Polym. Degrad. Stab. 2018, 156, 269–278. [Google Scholar] [CrossRef]
- Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 481174. [Google Scholar] [CrossRef]
- Alves, H.J.; Furman, M.; Kugelmeier, C.L.; Oliveira, C.R.; Bach, V.R.; Lupatini, K.N.; Neves, A.C.; Arantes, M.K. Effect of Shrimp Shells Milling on the Molar Mass of Chitosan. Polímeros Ciência E Tecnol. 2017, 27, 41–47. [Google Scholar] [CrossRef]
- Nurhaeni; Ridhay, A.; Laenggeng, A.H. Depolymerization of Chitosan from Snail (Pilla ampullaceae) Field Shell Using α-Amylase. J. Phys. Conf. Ser. 2019, 1242, 012005. [Google Scholar] [CrossRef]
- Chebotok, E.N.; Novikov, V.Y.; Konovalova, I.N. Depolymerization of Chitin and Chitosan in the Course of Base Deacetylation. Russ. J. Appl. Chem. 2006, 79, 1162–1166. [Google Scholar] [CrossRef]
- Tsao, C.T.; Chang, C.H.; Lin, Y.Y.; Wu, M.F.; Han, J.L.; Hsieh, K.H. Kinetic Study of Acid Depolymerization of Chitosan and Effects of Low Molecular Weight Chitosan on Erythrocyte Rouleaux Formation. Carbohydr. Res. 2011, 346, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, W.; Wu, Y.; He, Y.; Wu, T. Oxidative Degradation of Chitosan to the Low Molecular Water-Soluble Chitosan over Peroxotungstate as Chemical Scissors. PLoS ONE 2014, 9, e100743. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Yao, P.; Wei, Y. Influence of Ultraviolet-Irradiated Oxygen on Depolymerization of Chitosan. Polym. Degrad. Stab. 2009, 94, 851–858. [Google Scholar] [CrossRef]
- Pornsunthorntawee, O.; Katepetch, C.; Vanichvattanadecha, C.; Saito, N.; Rujiravanit, R. Depolymerization of Chitosan-Metal Complexes via a Solution Plasma Technique. Carbohydr. Polym. 2014, 102, 504–512. [Google Scholar] [CrossRef]
- Yue, W. Prevention of Browning of Depolymerized Chitosan Obtained by Gamma Irradiation. Carbohydr. Polym. 2014, 101, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Alves, H.J.; Vieceli, M.; Alves, C.; Muñiz, G.I.B.; de Oliveira, C.L.P.; Feroldi, M.; Arantes, M.K. Chitosan Depolymerization and Nanochitosan Production Using a Single Physical Procedure. J. Polym. Environ. 2018, 26, 3913–3923. [Google Scholar] [CrossRef]
- Signini, R.; Campana Filho, S.P. Purificação e Caracterização de Quitosana Comercial. Polímeros 1998, 8, 63–68. [Google Scholar] [CrossRef]
- Rinaudo, M.; Milas, M.; Dung, P.L. Characterization of Chitosan. Influence of Ionic Strength and Degree of Acetylation on Chain Expansion. Int. J. Biol. Macromol. 1993, 15, 281–285. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- dos Santos, Z.M.; Caroni, A.L.P.F.; Pereira, M.R.; da Silva, D.R.; Fonseca, J.L.C. Determination of Deacetylation Degree of Chitosan: A Comparison between Conductometric Titration and CHN Elemental Analysis. Carbohydr. Res. 2009, 344, 2591–2595. [Google Scholar] [CrossRef] [PubMed]
- Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos: Pesquisa e Desenvolvimento Na Ciência e Na Indústria; Editora da Unicamp: Campinas, Brazil, 2001. [Google Scholar]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Alves, H.J.; Gasparrini, L.J.; Silva, F.E.B.; Caciano, L.; de Muniz, G.I.B.; Ballester, E.L.C.; Cremonez, P.A.; Arantes, M.K. Alternative Methods for the Pilot-Scale Production and Characterization of Chitosan Nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 10977–10987. [Google Scholar] [CrossRef] [PubMed]
- Parker, F.S. Amides and Amines. In Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: Boston, MA, USA, 1971; Volume 1, pp. 165–172. [Google Scholar] [CrossRef]
Run | Drying Temperature (°C) | Residence Time inside the Oven (min) |
---|---|---|
1 | 90 | 5 |
2 | 90 | 15 |
3 | 130 | 5 |
4 | 130 | 15 |
5 (C) | 110 | 10 |
6 | 82 | 10 |
7 | 138 | 10 |
8 | 110 | 3 |
9 | 110 | 17 |
10 (C) | 110 | 10 |
Sample | Temperature (°C) | Residence Time (min) | Moisture (%) | D50 (nm) | PDI | Mv (kDa) | Crystallinity (%) | Crystallite Size (nm) |
---|---|---|---|---|---|---|---|---|
Commercial | - | - | - | 428 | 0.18 | 126.4 | 43.5 | 4.3 |
A1 | 90 | 5 | 38.0 ± 3.1 | 136 | 0.34 | 15.0 | 26.7 | 2.8 |
A2 | 90 | 15 | 14.3 ± 1.1 | 151 | 0.32 | 23.8 | 27.6 | 2.5 |
A3 | 130 | 5 | 10.4 ± 1.3 | 77 | 0.46 | 21.7 | 29.4 | 2.8 |
A4 | 130 | 15 | 9.1 ± 0.8 | 131 | 0.30 | 20.8 | 29.1 | 2.6 |
A5 | 110 | 10 | 9.1 ± 0.4 | 53 | 0.51 | 47.2 | 18.8 | 1.2 |
A6 | 82 | 10 | 34.2 ± 4.2 | 153 | 0.35 | 36.2 | 26.8 | 2.4 |
A7 | 138 | 10 | 10.3 ± 0.9 | 86 | 0.42 | 40.1 | 23.2 | 2.0 |
A8 | 110 | 3 | 53.5 ± 1.3 | 105 | 0.30 | 27.3 | 25.7 | 2.2 |
A9 | 110 | 17 | 6.8 ± 2.1 | 287 | 0.28 | 31.7 | 24.6 | 2.2 |
A10 | 110 | 10 | 11.0 ± 0.5 | 123 | 0.34 | 30.3 | 26.7 | 3.0 |
Source of Variation | SS | DF | MS | Fcalculated |
---|---|---|---|---|
Regression | 1995.220 | 5 | 399.044 | 4.427 |
Residual | 360.552 | 4 | 90.138 | |
Total | 2355.772 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.C.S.; Gasparrini, L.J.; Burin, G.R.M.; Alves, H.J. Can Chitosan Be Depolymerized by Thermal Shock? Polysaccharides 2024, 5, 630-642. https://doi.org/10.3390/polysaccharides5040040
Gomes ACS, Gasparrini LJ, Burin GRM, Alves HJ. Can Chitosan Be Depolymerized by Thermal Shock? Polysaccharides. 2024; 5(4):630-642. https://doi.org/10.3390/polysaccharides5040040
Chicago/Turabian StyleGomes, Ana C. S., Lázaro J. Gasparrini, Glaucia R. M. Burin, and Helton J. Alves. 2024. "Can Chitosan Be Depolymerized by Thermal Shock?" Polysaccharides 5, no. 4: 630-642. https://doi.org/10.3390/polysaccharides5040040
APA StyleGomes, A. C. S., Gasparrini, L. J., Burin, G. R. M., & Alves, H. J. (2024). Can Chitosan Be Depolymerized by Thermal Shock? Polysaccharides, 5(4), 630-642. https://doi.org/10.3390/polysaccharides5040040