Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Cellulose Production
2.3. Bacterial Cellulose Treatment Protocols
2.4. Residual Protein Quantification
2.5. Residual DNA Quantification
2.6. Fourier-Transform Infrared Spectroscopy Analysis
2.7. X-Ray Diffraction
2.8. Statistical Analysis
3. Results and Discussion
3.1. Overview of Surfactant Selection
3.2. Protein and DNA Removal Using the One-Step Treatment Protocol
3.3. FTIR Analysis to Evaluate Contaminate Removal from BC Pellicles Via the One-Step Treatment Protocol
3.4. The Two-Step Treatment Protocol Shows an Improvement in the Removal of Protein and DNA Using Degradable Anionic Surfactant
3.5. FTIR Analysis Confirms Improved Contaminant Removal, and Residue Surfactant Removal Using the Two-Step Treatment Protocol
3.6. XRD Analysis Confirms Maintenance of Characteristic BC Crystalline Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helenius, G.; Bäckdahl, H.; Bodin, A.; Nannmark, U.; Gatenholm, P.; Risberg, B. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A 2006, 76A, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Mazhar, U.-I.; Taous, K.; Joong Kon, P. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012, 88, 596–603. [Google Scholar] [CrossRef]
- Chen, C.; Xi, Y.; Weng, Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022, 14, 3335. [Google Scholar] [CrossRef]
- Mujuan, P.; Yinghong, H.; Fansu, M.; Yong, Z.; Hui, L.; Manling, D.; Qianqian, M.; Qi, W.; Zhen, C.; Lianyu, C.; et al. Application of bacterial cellulose in skin and bone tissue engineering. Eur. Polym. J. 2020, 122, 109365. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, S.; Yang, J.; Qiu, J.; Jiao, X.; Yue, X.; Ke, X.; Yang, G.; Zhang, L. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int. J. Bioprint. 2023, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Madhavi Latha, C.; Aditya, V.; Ninian Prem Prashanth, P.; Swati, D.; Sreenivasa Rao, P. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int. J. Biol. Macromol. 2021, 175, 495–515. [Google Scholar] [CrossRef]
- Tudoroiu, E.-E.; Dinu-Pîrvu, C.-E.; Albu Kaya, M.G.; Popa, L.; Anuța, V.; Prisada, R.M.; Ghica, M.V. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals 2021, 14, 1215. [Google Scholar] [CrossRef]
- Das, M.; Zandraa, O.; Mudenur, C.; Saha, N.; Sáha, P.; Mandal, B.; Katiyar, V. Composite Scaffolds Based on Bacterial Cellulose for Wound Dressing Application. ACS Appl. Bio Mater. 2022, 5, 3722–3733. [Google Scholar] [CrossRef]
- Shanshan, Z.; Ran, Z.; Hua, C.; Yudong, L.; Jianhai, Z.; Xiao, C.; Guixing, Q.; Zhihong, W.; Guang, Y. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater. Sci. Eng. C 2015, 46, 111–117. [Google Scholar] [CrossRef]
- Maximilian, S.; Stefanie, R.; Dieter, K.; Anja, S.-K.; Maria, G.; Thomas, R.; Georg, L.; Navid, M.; Thorsten, W.; Jens, W. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: Proof of concept? J. Surg. Res. 2014, 189, 340–347. [Google Scholar] [CrossRef]
- Pajorova, J.; Skogberg, A.; Hadraba, D.; Broz, A.; Travnickova, M.; Zikmundova, M.; Honkanen, M.; Hannula, M.; Lahtinen, P.; Tomkova, M.; et al. Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for Regenerative Applications. Biomacromolecules 2020, 21, 4857–4870. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Jędrzejczak-Krzepkowska, M.; Ludwicka, K. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen Komagataeibacter Strains and Their Application Potential. Int. J. Mol. Sci. 2022, 23, 3391. [Google Scholar] [CrossRef] [PubMed]
- Brugnoli, M.; Robotti, F.; La China, S.; Anguluri, K.; Haghighi, H.; Bottan, S.; Ferrari, A.; Gullo, M. Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. Sci. Rep. 2021, 11, 19311. [Google Scholar] [CrossRef]
- Ahmed, J.; Gultekinoglu, M.; Edirisinghe, M. Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol. Adv. 2020, 41, 107549. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent advances in bacterial cellulose. Cellulose 2014, 21, 1–30. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; da Silva Junior, C.J.G.; de Medeiros, A.D.L.M.; do Nascimento, H.A.; Sarubbo, M.; de Medeiros, T.P.M.; Costa, A.F.d.S.; Sarubbo, L.A. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022, 27, 5580. [Google Scholar] [CrossRef]
- Santos, S.M.; Carbajo, J.M.; Quintana, E.; Ibarra, D.; Gomez, N.; Ladero, M.; Eugenio, M.E.; Villar, J.C. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr. Polym. 2015, 116, 173–181. [Google Scholar] [CrossRef]
- Gea, S.; Reynolds, C.T.; Roohpour, N.; Wirjosentono, B.; Soykeabkaew, N.; Bilotti, E.; Peijs, T. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour. Technol. 2011, 102, 9105–9110. [Google Scholar] [CrossRef]
- Tang, W.; Jia, S.; Jia, Y.; Yang, H. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 2010, 26, 125–131. [Google Scholar] [CrossRef]
- Muhammad, M.T.; Khan, M.N. Eco-friendly, biodegradable natural surfactant (Acacia Concinna): An alternative to the synthetic surfactants. J. Clean. Prod. 2018, 188, 678–685. [Google Scholar] [CrossRef]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. RSC Adv. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Han, J.; Shim, E.; Kim, H.R. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Text. Res. J. 2019, 89, 1094–1104. [Google Scholar] [CrossRef]
- Martínez Ávila, H.; Schwarz, S.; Feldmann, E.-M.; Mantas, A.; von Bomhard, A.; Gatenholm, P.; Rotter, N. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 2014, 98, 7423–7435. [Google Scholar] [CrossRef] [PubMed]
- Juan-Colás, J.; Dresser, L.; Morris, K.; Lagadou, H.; Ward, R.H.; Burns, A.; Tear, S.; Johnson, S.; Leake, M.C.; Quinn, S.D. The mechanism of vesicle solubilization by the detergent sodium dodecyl sulfate. Langmuir 2020, 36, 11499–11507. [Google Scholar] [CrossRef]
- Jones, M. Surfactants in membrane solubilisation. Int. J. Pharm. 1999, 177, 137–159. [Google Scholar] [CrossRef]
- Miozzari, G.; Niederberger, P.; Hu, R. Permeabilization of microorganisms by Triton X-100. Anal. Biochem. 1978, 90, 220–233. [Google Scholar] [CrossRef]
- Costa, M.F.; de Oliveira, A.M.; de Oliveira Junior, E.N. Biodegradation of linear alkylbenzene sulfonate (LAS) by Penicillium chrysogenum. Bioresour. Technol. Rep. 2020, 9, 100363. [Google Scholar] [CrossRef]
- Corada-Fernández, C.; González-Mazo, E.; Lara-Martín, P.A. Evaluation of the anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) using OECD 308 water/sediment systems. J. Hazard. Mater. 2018, 360, 24–31. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Seedher, N. In vitro study of the mechanism of interaction of trifluoperazine dihydrochloride with bovine serum albumin. Indian J. Pharm. Sci. 2000, 62, 16–20. [Google Scholar]
- Yushmanov, V.E.; Perussi, J.R.; Imasato, H.; Tabak, M. Interaction of papaverine with micelles of surfactants with different charge studied by 1H-NMR. Biochim. Biophys. Acta (BBA)-Biomembr. 1994, 1189, 74–80. [Google Scholar] [CrossRef]
- Ivanković, T.; Hrenović, J. Surfactants in the environment. Arh. Za Hig. Rada I Toksikol. 2010, 61, 95–109. [Google Scholar] [CrossRef]
- Peters, R.; Montemagno, C.; Shem, L.; Lewis, B. Surfactant Screening of Diesel-Contaminated Soil; Argonne National Lab: Lemont, IL, USA, 1990. [Google Scholar]
- Pradhan, A.; Bhattacharyya, A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. J. Clean. Prod. 2017, 150, 127–134. [Google Scholar] [CrossRef]
- Wallenstein, S.; Zucker, C.L.; Fleiss, J.L. Some statistical methods useful in circulation research. Circ. Res. 1980, 47, 1–9. [Google Scholar] [CrossRef]
- Balestrini, J.L.; Gard, A.L.; Liu, A.; Leiby, K.L.; Schwan, J.; Kunkemoeller, B.; Calle, E.A.; Sivarapatna, A.; Lin, T.; Dimitrievska, S. Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr. Biol. 2015, 7, 1598–1610. [Google Scholar] [CrossRef]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef]
- van Zyl, E.M.; Coburn, J.M. Functionalization of Bacterial Cellulose with the Antimicrobial Peptide KR-12 via Chimerical Cellulose-Binding Peptides. Int. J. Mol. Sci. 2024, 25, 1462. [Google Scholar] [CrossRef]
- van Zyl, E.M.; Kennedy, M.A.; Nason, W.; Fenlon, S.J.; Young, E.M.; Smith, L.J.; Bhatia, S.R.; Coburn, J.M. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol. Biomater. Adv. 2023, 148, 213345. [Google Scholar] [CrossRef]
- Osborne, J. Notes on the use of data transformations. Pract. Assess. Res. Eval. 2002, 8, 6. [Google Scholar]
- Calle, E.A.; Hill, R.C.; Leiby, K.L.; Le, A.V.; Gard, A.L.; Madri, J.A.; Hansen, K.C.; Niklason, L.E. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater. 2016, 46, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Gervajio, G.C. Fatty Acids and Derivatives from Coconut Oil; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 445–482. [Google Scholar]
- Park, K.; Lim, J. Synthesis of phospholipid based zwitterionic surfactant from coconut oil source and characterization of their interfacial, antiseptic and antiviral properties. J. Ind. Eng. Chem. 2022, 115, 241–250. [Google Scholar] [CrossRef]
- De, A.; Guin, M.; Jain, P. Sugar-Based Surfactants. Surfactants from Renewable Raw Materials; CRC Press: Boca Raton, FL, USA, 2021; pp. 75–96. [Google Scholar]
- Ananthapadmanabhan, K.P.; Moore, D.J.; Subramanyan, K.; Misra, M.; Meyer, F. Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol. Ther. 2004, 17, 16–25. [Google Scholar] [CrossRef]
- Solodkin, G.; Chaudhari, U.; Subramanyan, K.; Johnson, A.W.; Yan, X.; Gottlieb, A. Benefits of mild cleansing: Synthetic surfactant based (syndet) bars for patients with atopic dermatitis. Cutis 2006, 77, 317–324. [Google Scholar] [PubMed]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Cocamidopropyl betaine (CAPB). Int. J. Toxicol. 2012, 31 (Suppl. S4), 77S–111S. [Google Scholar] [CrossRef]
- Clendennen, S.K.; Boaz, N.W. Betaine Amphoteric Surfactants-Synthesis, Properties, and Applications. In Biobased Surfactants: Synthesis, Properties, and Applications; AOCS Press: Champaign, IL, USA, 2019; pp. 447–469. [Google Scholar] [CrossRef]
- Hunter, J.E.; Fowler, J.F., Jr. Safety to human skin of cocamidopropyl betaine: A mild surfactant for personal-care products. J. Surfactants Deterg. 1998, 1, 235–239. [Google Scholar] [CrossRef]
- Salomon, G.; Giordano-Labadie, F. Surfactant irritations and allergies. Eur. J. Dermatol. 2022, 32, 677–681. [Google Scholar] [CrossRef]
- Fiume, M.M.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Decyl Glucoside and Other Alkyl Glucosides as Used in Cosmetics. Int. J. Toxicol. 2013, 32 (Suppl. S5), 22S–48S. [Google Scholar] [CrossRef]
- Moosavi-Movahedi, A.A. Thermodynamics of protein denaturation by sodium dodecyl sulfate. J. Iran. Chem. Soc. 2005, 2, 189–196. [Google Scholar] [CrossRef]
- Singer, M.M.; Tjeerdema, R.S. Fate and Effects of the Surfactant Sodium Dodecyl Sulfate. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1993; pp. 95–149. [Google Scholar]
- Yadav, V.K.; Khan, S.H.; Choudhary, N.; Tirth, V.; Kumar, P.; Ravi, R.K.; Modi, S.; Khayal, A.; Shah, M.P.; Sharma, P.; et al. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J. Basic Microbiol. 2022, 62, 348–360. [Google Scholar] [CrossRef]
- Bondi, C.A.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products. Environ. Health Insights 2015, 9, EHI.S31765. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rub, M.; Anamul Hoque, M.; Azum, N.; Mahbub, S. Investigation of the aggregation, clouding and thermodynamics of the mixture of sodium alginate with sodium dodecyl sulfate and triton X-100 in aqueous and aqua-organic mixed solvents media. J. Mol. Liq. 2022, 346, 117109. [Google Scholar] [CrossRef]
- Abu-Ghunmi, L.; Badawi, M.; Fayyad, M. Fate of Triton X-100 Applications on Water and Soil Environments: A Review. J. Surfactants Deterg. 2014, 17, 833–838. [Google Scholar] [CrossRef]
- Robson, R.J.; Dennis, E.A. The size, shape, and hydration of nonionic surfactant micelles. Triton X-100. J. Phys. Chem. 1977, 81, 1075–1078. [Google Scholar] [CrossRef]
- Giacomelli, C.E.; Vermeer, A.W.P.; Norde, W. Micellization and Adsorption Characteristics of CHAPS. Langmuir 2000, 16, 4853–4858. [Google Scholar] [CrossRef]
- Kroflič, A.; Šarac, B.; Bešter-Rogač, M. Thermodynamic Characterization of 3-[(3-Cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) Micellization Using Isothermal Titration Calorimetry: Temperature, Salt, and pH Dependence. Langmuir 2012, 28, 10363–10371. [Google Scholar] [CrossRef]
- Fuller, M.E.; Andaya, C.; McClay, K. Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J. Microbiol. Methods 2018, 144, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Smith, B. The C = O bond, part VI: Esters and the rule of three. Spectroscopy 2018, 33, 20–23. [Google Scholar]
- Lievens, C.; Mourant, D.; He, M.; Gunawan, R.; Li, X.; Li, C.-Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel 2011, 90, 3417–3423. [Google Scholar] [CrossRef]
- Adak, S.; Banerjee, R. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant. Carbohydr. Polym. 2016, 150, 359–368. [Google Scholar] [CrossRef]
- Eilers, P.H. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- Eilers, P.H. Parametric time warping. Anal. Chem. 2004, 76, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S.; Kashyout, A.E.-H.B. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020, 10, 3491. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Han, Y.-H.; Ye, Y.-X.; Shi, X.-X.; Xiang, P.; Chen, D.-L.; Li, M. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv. 2017, 7, 45145–45155. [Google Scholar] [CrossRef]
- Zeng, M.; Laromaine, A.; Roig, A. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose 2014, 21, 4455–4469. [Google Scholar] [CrossRef]
Surfactants | Chemical Structure | Category | Degradability | References |
---|---|---|---|---|
Sodium Dodecyl Sulfate (SDS) | Anionic | Non-degradable or degradable by bacteria | [53,54,55] | |
Sodium Cocoyl Isethionate (SCI) | Anionic | Hydrolytically degradable ester bond | [46,47] | |
CHAPS | Zwitterionic | Non-degradable | [60,61] | |
Cocamidopropyl Betaine (CB) | Zwitterionic | Hydrolytically degradable amide bond | [48,49,50,51] | |
Triton-X 100 (TX) | Non-ionic | Non-degradable | [57,58] | |
Decyl Glucoside (DG) | Non-ionic | Biodegradable | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikbakht, A.; van Zyl, E.M.; Larson, S.; Fenlon, S.; Coburn, J.M. Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants. Polysaccharides 2024, 5, 857-871. https://doi.org/10.3390/polysaccharides5040053
Nikbakht A, van Zyl EM, Larson S, Fenlon S, Coburn JM. Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants. Polysaccharides. 2024; 5(4):857-871. https://doi.org/10.3390/polysaccharides5040053
Chicago/Turabian StyleNikbakht, Alireza, Elizabeth M. van Zyl, Stephen Larson, Sawyer Fenlon, and Jeannine M. Coburn. 2024. "Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants" Polysaccharides 5, no. 4: 857-871. https://doi.org/10.3390/polysaccharides5040053
APA StyleNikbakht, A., van Zyl, E. M., Larson, S., Fenlon, S., & Coburn, J. M. (2024). Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants. Polysaccharides, 5(4), 857-871. https://doi.org/10.3390/polysaccharides5040053