Solute Energetics in Aqueous Xanthan Gum Solutions: What Can Be Learned from a Fluorescent Probe?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Steady-State Spectroscopy
3.1.1. XG Concentration Effect
3.1.2. Temperature Effect
3.2. Time-Resolved Fluorescence
3.2.1. XG Concentration Effect
3.2.2. Temperature Effect
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Petri, D.F.S. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015, 132, 42035. [Google Scholar] [CrossRef]
- Nsengiyumva, E.M.; Alexandridis, P. Xanthan gum in aqueous solutions: Fundamentals and applications. Int. J. Biol. Macromol. 2022, 216, 583–604. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, M.; Gupta, R.K.; Rani, A. Natural gums and their derivatives based hydrogels: In biomedical, environment, agriculture, and food industry. Crit. Rev. Biotechnol. 2024, 44, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, B.; Gihar, S.; Kumar, D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydr. Res. 2024, 538, 109070. [Google Scholar] [CrossRef] [PubMed]
- Kashaudhan, K.; Pande, P.P.; Sharma, J.; Shankar, R.; Nath, A. Modified xanthan gum (natural polymeric material) and its derivative for wastewater treatment: A review. Environ. Prog. Sustain. Energy 2024, e14419. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, C.; Ding, J.; Shi, X.; Qiu, L.; Yao, W.; Fan, R. Effective Flotation Separation of Chalcopyrite and Graphite Using Eco-Friendly Xanthan Gum as Depressant. Miner. Process. Extr. Metall. Rev. 2023, 45, 486–494. [Google Scholar] [CrossRef]
- Usman, M.; Taj, M.B.; Carabineiro, S.A.C. Gum-based nanocomposites for the removal of metals and dyes from waste water. Environ. Sci. Pollut. Res. 2023, 30, 102027–102046. [Google Scholar] [CrossRef] [PubMed]
- Jadav, M.; Pooja, D.; Adams, D.J.; Kulhari, H. Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics 2023, 15, 402. [Google Scholar] [CrossRef] [PubMed]
- Rochefort, W.E.; Middleman, S. Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments. J. Rheol. 1987, 31, 337–369. [Google Scholar] [CrossRef]
- Rezaei, A.; Karami, S.; Karimi, A.M.; Vatanparast, H.; Sadeghnejad, S. New molecular and macroscopic understandings of novel green chemicals based on Xanthan Gum and bio-surfactants for enhanced oil recovery. Sci. Rep. 2024, 14, 12752. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Fu, Y.; Jiao, H.; Wang, X.; Wang, Q.; Zhou, M.; Yong, Y.-C.; Liu, J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr. Polym. 2024, 335, 122078. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, S.; Gong, H.; Yip, R.C.S.; Chen, H. Biopharmaceutical applications of microbial polysaccharides as materials: A Review. Int. J. Biol. Macromol. 2023, 239, 124259. [Google Scholar] [CrossRef]
- Sorze, A.; Valentini, F.; Dorigato, A.; Pegoretti, A. Development of a Xanthan Gum Based Superabsorbent and Water Retaining Composites for Agricultural and Forestry Applications. Molecules 2023, 28, 1952. [Google Scholar] [CrossRef] [PubMed]
- Paudel, A.; Crum, A.N.; Wang, Y. A full metal-free flexible ammonium-ion battery with biodegradable hydrogel electrolyte. J. Mat. Chem. A 2024, 12, 11975–11985. [Google Scholar] [CrossRef]
- Patel, J.; Maji, B.; Moorthy, N.S.H.N.; Maiti, S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC Adv. 2020, 10, 27103–27136. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Qin, F.; Liu, T.; Zhang, X. Enhanced Oil Recovery Performance and Solution Properties of Hydrophobic Associative Xanthan Gum. Energy Fuels 2022, 36, 181–194. [Google Scholar] [CrossRef]
- Morris, E.R. Ordered conformation of xanthan in solutions and “weak gels”: Single helix, double helix–or both? Food Hydrocoll. 2019, 86, 18–25. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gomez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Holzwarth, G.; Ogletree, J. Pyruvate-free xanthan. Carbohydr. Res. 1979, 76, 277–280. [Google Scholar] [CrossRef]
- de Moura, M.R.V.; Moreno, R. Concentration, Brine Salinity and Temperature effects on Xanthan Gum Solutions Rheology. Appl. Rheol. 2019, 29, 69–79. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Goda, E.S.; Gab-Allah, M.A.; Hong, S.E.; Pandit, B.; Lee, S.; Gamal, H.; Rehman, A.u.; Yoon, K.R. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J. Environ. Chem. Eng. 2021, 9, 104702. [Google Scholar] [CrossRef]
- Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stab. 1998, 59, 81–84. [Google Scholar] [CrossRef]
- Reinoso, D.; Martín-Alfonso, M.J.; Luckham, P.F.; Martínez-Boza, F.J. Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydr. Polym. 2019, 203, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Milas, M.; Rinaudo, M. Conformational investigation on the bacterial polysaccharide xanthan. Carbohydr. Res. 1979, 76, 189–196. [Google Scholar] [CrossRef]
- Milas, M.; Reed, W.F.; Printz, S. Conformations and flexibility of native and re-natured xanthan in aqueous solutions. Int. J. Biol. Macromol. 1996, 18, 211–221. [Google Scholar] [CrossRef]
- Brunchi, C.-E.; Avadanei, M.; Bercea, M.; Morariu, S. Chain conformation of xanthan in solution as influenced by temperature and salt addition. J. Mol. Liq. 2019, 287, 111008. [Google Scholar] [CrossRef]
- Wyatt, N.B.; Gunther, C.M.; Liberatore, M.W. Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer 2011, 52, 2437–2444. [Google Scholar] [CrossRef]
- Wyatt, N.B.; Liberatore, M.W. Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum. J. Appl. Poly. Sci. 2009, 114, 4076–4084. [Google Scholar] [CrossRef]
- Morris, E.R.; Rees, D.A.; Young, G.; Walkinshaw, M.D.; Darke, A. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J. Mol. Biol. 1977, 110, 1–16. [Google Scholar] [CrossRef]
- Sato, T.; Norisuye, T.; Fujita, H. Double-Stranded Helix of Xanthan: Dissociation Behavior in Mixtures of Water and Cadoxen. Polym. J. 1985, 17, 729–735. [Google Scholar] [CrossRef]
- Tomofuji, Y.; Matsuo, K.; Terao, K. Kinetics of denaturation and renaturation processes of double-stranded helical polysaccharide, xanthan in aqueous sodium chloride. Carbohydr. Polym. 2022, 275, 118681. [Google Scholar] [CrossRef]
- Papagiannopoulos, A.; Sotiropoulos, K.; Radulescu, A. Scattering investigation of multiscale organization in aqueous solutions of native xanthan. Carbohydr. Polym. 2016, 153, 196–202. [Google Scholar] [CrossRef]
- Shatwell, K.P.; Sutherland, I.W.; Dea, I.C.M.; Rossmurphy, S.B. The influence of acetyl and pyruvate substituents on the helix-coil transition behavior of xanthan. Carbohydr. Res. 1990, 206, 87–103. [Google Scholar] [CrossRef]
- Rinaudo, M.; Milas, M.; Bresolin, T.; Ganter, J. Physical properties of xanthan, galactomannan and their mixtures in aqueous solutions. Macromol. Symp. 1999, 140, 115–124. [Google Scholar] [CrossRef]
- Philippova, O.E.; Shibaev, A.V.; Muravlev, D.A.; Mityuk, D.Y. Structure and Rheology of Solutions and Gels of Stiff Polyelectrolyte at High Salt Concentration. Macromolecules 2016, 49, 6031–6040. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Lad, M.; Janin, M.; Morris, G.A.; MacNaughtan, W.; Sworn, G.; Foster, T.J. A novel approach to the determination of the pyruvate and acetate distribution in xanthan. Food Hydrocoll. 2015, 44, 162–171. [Google Scholar] [CrossRef]
- Hungerford, G.; Allison, A.; McLoskey, D.; Kuimova, M.K.; Yahioglu, G.; Suhling, K. Monitoring Sol-to-Gel Transitions via Fluorescence Lifetime Determination Using Viscosity Sensitive Fluorescent Probes. J. Phys. Chem. B 2009, 113, 12067–12074. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Kaur, M.; Kumar, K.; Chauhan, M.S. Study of the Effect of Electrolyte and Temperature on the Critical Micelle Concentration of Dodecyltrimethylammonium Bromide in Aqueous Medium. J. Chem. Thermodyn. 2014, 78, 175–181. [Google Scholar] [CrossRef]
- Geng, F.; Zheng, L.; Yu, L.; Li, G.; Tung, C. Interaction of Bovine Serum Albumin and Long-Chain Imidazolium Ionic Liquid Measured by Fluorescence Spectra and Surface Tension. Process Biochem. 2010, 45, 306–311. [Google Scholar] [CrossRef]
- Hanczyc, P.; Mikhailovsky, A.; Boyer, D.R.; Sawaya, M.R.; Heeger, A.; Eisenberg, D. Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils. J. Phys. Chem. B 2018, 122, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Hu, Y.; Huang, Z.; Wenmeng, D. Preparation and property evaluation of a hydrophobically modified xanthan gum XG-C16. J. Dispers. Sci. Technol. 2020, 41, 656–666. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, H.; Wan, Z.; Xiao, Q.; Xiaa, H.; Guo, S. Highly biodegradable, thermostable eutectogels prepared by gelation of natural deep eutectic solvents using xanthan gum: Preparation and characterization. RSC Adv. 2020, 10, 28376–28382. [Google Scholar] [CrossRef] [PubMed]
- Shibaev, A.V.; Muravlev, D.A.; Muravleva, A.K.; Matveev, V.V.; Chalykh, A.E.; Philippova, O.E. pH-Dependent Gelation of a Stiff Anionic Polysaccharide in the Presence of Metal Ions. Polymers 2020, 12, 868. [Google Scholar] [CrossRef] [PubMed]
- Krstonošić, V.; Milanović, M.; Dokić, L. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. Food Hydrocoll. 2019, 87, 108–118. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym. 2018, 180, 128–144. [Google Scholar] [CrossRef]
- Habibi, H.; Khosravi-Darani, K. Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatal. Agric. Biotechnol. 2017, 10, 130–140. [Google Scholar] [CrossRef]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, N.B.; Liberatore, M.W. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions. Soft Matter 2010, 6, 3346–3352. [Google Scholar] [CrossRef]
- Kimball, J.; Chavez, J.; Ceresa, L.; Kitchner, E.; Nurekeyev, Z.; Doan, H.; Szabelski, M.; Borejdo, J.; Gryczynski, I.; Gryczynski, Z. On the origin and correction for inner filter effects in fluorescence Part I: Primary inner filter effect-the proper approach for sample absorbance correction. Methods Appl. Fluoresc. 2020, 8, 033002. [Google Scholar] [CrossRef] [PubMed]
- Friganović, T.; Weitner, T. Reducing the Inner Filter Effect in Microplates by Increasing Absorbance? Linear Fluorescence in Highly Concentrated Fluorophore Solutions in the Presence of an Added Absorber. Anal. Chem. 2023, 95, 13036–13045. [Google Scholar] [CrossRef] [PubMed]
- Barra, K.M.; Sabatini, R.P.; McAtee, Z.P.; Heitz, M.P. Solvation and Rotation Dynamics in the Trihexyl(tetradecyl)phosphonium Chloride Ionic Liquid/Methanol Cosolvent System. J. Phys. Chem. B 2014, 118, 12979–12992. [Google Scholar] [CrossRef] [PubMed]
- Horng, M.L.; Gardecki, J.A.; Papazyan, A.; Maroncelli, M. Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 1995, 99, 17311–17337. [Google Scholar] [CrossRef]
- Heitz, M.P.; Sabo, T.J.; Robillard, S.M. Coumarin 153 Dynamics in Ethylammonium Nitrate: The Effects of Dilution with Methanol. Sustain. Chem. 2021, 2, 778–795. [Google Scholar] [CrossRef]
- Moylan, C.R. Molecular hyperpolarizabilities of coumarin dyes. J. Phys. Chem. 1994, 98, 13513–13516. [Google Scholar] [CrossRef]
- Baumann, W.; Nagy, Z. Photoinduced charge transfer as revealed by ground and excited state dipole moments. Pure Appl. Chem. 1993, 65, 1729–1732. [Google Scholar] [CrossRef]
- Reynolds, L.; Gardecki, J.A.; Frankland, S.J.V.; Horng, M.L.; Maroncelli, M. Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics. J. Phys. Chem. 1996, 100, 10337–10354. [Google Scholar] [CrossRef]
- Cerezo, J.; Gao, S.; Armaroli, N.; Ingrosso, F.; Prampolini, G.; Santoro, F.; Ventura, B.; Pastore, M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023, 28, 3910. [Google Scholar] [CrossRef] [PubMed]
- Królicki, R.; Jarzȩba, W.; Mostafavi, M.; Lampre, I. Preferential Solvation of Coumarin 153—The Role of Hydrogen Bonding. J. Phys. Chem. A 2002, 106, 1708–1713. [Google Scholar] [CrossRef]
- Fee, R.S.; Milsom, J.A.; Maroncelli, M. Inhomogeneous Decay Kinetics and Apparent Solvent Relaxation at Low Temperatures. J. Phys. Chem. 1991, 95, 5170–5181. [Google Scholar] [CrossRef]
- Kuznetsova, N.A.; Kaliya, O.L. The photochemistry of coumarins. Russ. Chem. Rev. 1992, 61, 683–696. [Google Scholar] [CrossRef]
- Dobek, K. The Influence of Temperature on Coumarin 153 Fluorescence Kinetics. J. Fluoresc. 2011, 21, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Dobek, K.; Karolczak, J. The Influence of Temperature on C153 Steady-State Absorption and Fluorescence Kinetics in Hydrogen Bonding Solvents. J. Fluoresc. 2012, 22, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Milas, M.; Rinaudo, M.; Duplessix, R.; Borsali, R.; Lindner, P. Small Angle Neutron Scattering from Polyelectrolyte Solutions: From Disordered to Ordered Xanthan Chain Conformation. Macromolecules 1995, 28, 3119–3124. [Google Scholar] [CrossRef]
- Milas, M.; Rinaudo, M.; Tinland, B. The viscosity dependence on concentration, molecular-weight and shear rate of xanthan solutions. Polym. Bull. 1985, 14, 157–164. [Google Scholar] [CrossRef]
- Banerjee, P.; Mukherjee, I.; Bhattacharya, S.; Datta, S.; Moulik, S.P.; Sarkar, D. Sorption of Water Vapor, Hydration, and Viscosity of Carboxymethylhydroxypropyl Guar, Diutan, and Xanthan Gums, and Their Molecular Association with and without Salts (NaCl, CaCl2, HCOOK, CH3COONa, (NH4)2SO4 and MgSO4) in Aqueous Solution. Langmuir 2009, 25, 11647–11656. [Google Scholar] [CrossRef] [PubMed]
- Nsengiyumva, E.M.; Heitz, M.P.; Alexandridis, P. Thermal hysteresis phenomena in aqueous xanthan gum solutions. Food Hydrocoll. 2023, 144, 108973. [Google Scholar] [CrossRef]
- Brunchi, C.-E.; Morariu, S.; Iftime, M.-M.; Stoica, I. Xanthan gum in solution and solid-like state: Effect of temperature and polymer concentration. J. Mol. Liq. 2023, 387, 122600. [Google Scholar] [CrossRef]
- Brunchi, C.E.; Morariu, S.; Bercea, M. Intrinsic viscosity and conformational parameters of xanthan in aqueous solutions: Salt addition effect. Colloids Surf. B 2014, 122, 512–519. [Google Scholar] [CrossRef]
- Papagiannopoulos, A.; Sotiropoulos, K.; Pispas, S. Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions. Food Hydrocoll. 2016, 61, 201–210. [Google Scholar] [CrossRef]
- Lippert, E. Dipolmoment und Elektronenstruktur von angeregten Molekülen. Z. Naturforschg. 1955, 10a, 541. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipole Moments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, D.; Li, C.; Zhang, W.; Bai, X. Effects of deacetylation on properties and conformation of xanthan gum. J. Mol. Liq. 2022, 345, 117009. [Google Scholar] [CrossRef]
- Brunchi, C.-E.; Morariu, S.; Bercea, M. Impact of ethanol addition on the behaviour of xanthan gum in aqueous media. Food Hydrocoll. 2021, 120, 106928. [Google Scholar] [CrossRef]
- Morris, E.R.; Cutler, A.N.; Ross-Murphy, S.B.; Rees, D.A.; Price, J. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1981, 1, 5–21. [Google Scholar] [CrossRef]
- Nsengiyumva, E.M.; Heitz, M.P.; Alexandridis, P. Salt and Temperature Effects on Xanthan Gum Polysaccharide in Aqueous Solutions. Int. J. Molec. Sci. 2024, 25, 490. [Google Scholar] [CrossRef] [PubMed]
- Takemasa, M.; Nishinari, K. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures. J. Phys. Chem. B 2016, 120, 3027–3037. [Google Scholar] [CrossRef]
- Norton, I.T.; Goodall, D.M.; Frangou, S.A.; Morris, E.R.; Rees, D.A. Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J. Mol. Biol. 1984, 175, 371–394. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Biyajima, Y.; Sato, T. Thermal denaturation, renaturation, and aggregation of a double-helical polysaccharide xanthan in aqueous solution. Polym. J. 2009, 41, 526–532. [Google Scholar] [CrossRef]
- Brunchi, C.-E.; Bercea, M.; Morariu, S.; Dascalu, M. Some properties of xanthan gum in aqueous solutions: Effect of temperature and pH. J. Polym. Res. 2016, 23, 123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heitz, M.P.; Nsengiyumva, E.M.; Alexandridis, P. Solute Energetics in Aqueous Xanthan Gum Solutions: What Can Be Learned from a Fluorescent Probe? Polysaccharides 2024, 5, 892-910. https://doi.org/10.3390/polysaccharides5040055
Heitz MP, Nsengiyumva EM, Alexandridis P. Solute Energetics in Aqueous Xanthan Gum Solutions: What Can Be Learned from a Fluorescent Probe? Polysaccharides. 2024; 5(4):892-910. https://doi.org/10.3390/polysaccharides5040055
Chicago/Turabian StyleHeitz, Mark P., Emmanuel M. Nsengiyumva, and Paschalis Alexandridis. 2024. "Solute Energetics in Aqueous Xanthan Gum Solutions: What Can Be Learned from a Fluorescent Probe?" Polysaccharides 5, no. 4: 892-910. https://doi.org/10.3390/polysaccharides5040055
APA StyleHeitz, M. P., Nsengiyumva, E. M., & Alexandridis, P. (2024). Solute Energetics in Aqueous Xanthan Gum Solutions: What Can Be Learned from a Fluorescent Probe? Polysaccharides, 5(4), 892-910. https://doi.org/10.3390/polysaccharides5040055