Corn Stalks-Derived Hemicellulosic Polysaccharides: Extraction and Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Soda Pulping—SP
2.3. Separation by Precipitation
2.3.1. Lignin Separation
2.3.2. Hemicelluloses Separation
2.4. Ion Exchange/Adsorption Treatments
2.4.1. Anion Exchange
2.4.2. Activated Carbon (AC) Adsorption
2.4.3. Cation Exchange
2.5. Chemical Analysis of Liquid Streams and Solid Materials
3. Results and Discussion
3.1. Chemical Composition of CS, CS Pulp, and Solid Product Separated from SPBL4.5
3.2. Chemical Composition of SPBL and SPBL4.5
3.3. Anion Exchange Treatment Optimization
3.4. Hemicelluloses Characterization
3.4.1. UV Analysis and Color Value of Isolated Hemicelluloses
3.4.2. FTIR Analysis of Isolated Hemicelluloses
3.4.3. Chemical Composition of the Isolated Hemicelluloses Samples
3.5. Mass Balance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Persin, Z.; Stana-Kleinschek, K.; Foster, T.J.; van Dam, J.E.G.; Boeriu, C.G.; Navard, P. Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr. Polym. 2011, 84, 22–32. [Google Scholar] [CrossRef]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 480–501. [Google Scholar] [CrossRef]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, D.; Yin, J.-Y.; Nie, S.-P. Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. Trends Food Sci. Technol. 2020, 99, 76–87. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Chatha, S.A.S.; Iqbal, Y.; Hussain, A.I.; Khan, I.; Xie, F. Recent trends in extraction, purification, and antioxidant activity evaluation of plant leaf-extract polysaccharides. Biofuels Bioprod. Biorefining 2022, 16, 1820–1848. [Google Scholar] [CrossRef]
- Gericke, M.; Amaral, A.J.R.; Budtova, T.; De Wever, P.; Groth, T.; Heinze, T.; Höfte, H.; Huber, A.; Ikkala, O.; Kapuśniak, J.; et al. The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydr. Polym. 2024, 326, 121633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shakeel, U.; Saif Ur Rehman, M.; Li, H.; Xu, X.; Xu, J. Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J. Clean. Prod. 2020, 253, 120076. [Google Scholar] [CrossRef]
- Balakshin, M.; Capanema, E.; Gracz, H.; Chang, H.-m.; Jameel, H. Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 2011, 233, 1097–1110. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Danu, M.; Ailiesei, G.-L.; Nechita, M.T. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers 2022, 14, 1662. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Drăgoi, E.N.; Danu, M.; Ailiesei, G.-L.; Balan, C.D.; Chicet, D.-L.; Nechita, M.T. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles. Polymers 2023, 15, 1038. [Google Scholar] [CrossRef] [PubMed]
- Puițel, A.C.; Balan, C.D.; Ailiesei, G.-L.; Drăgoi, E.N.; Nechita, M.T. Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass. Polymers 2023, 15, 4597. [Google Scholar] [CrossRef]
- Puițel, A.C.; Bălușescu, G.; Balan, C.D.; Nechita, M.T. The Potential Valorization of Corn Stalks by Alkaline Sequential Fractionation to Obtain Papermaking Fibers, Hemicelluloses, and Lignin—A Comprehensive Mass Balance Approach. Polymers 2024, 16, 1542. [Google Scholar] [CrossRef]
- Nechita, M.T.; Suditu, G.D.; Puițel, A.C.; Drăgoi, E.N. Differential evolution-based optimization of corn stalks black liquor decolorization using active carbon and TiO2/UV. Sci. Rep. 2021, 11, 18481. [Google Scholar] [CrossRef]
- Suditu, G.D.; Drăgoi, E.N.; Puițel, A.C.; Nechita, M.T. Technological and Economic Optimization of Wheat Straw Black Liquor Decolorization by Activated Carbon. Water 2023, 15, 2911. [Google Scholar] [CrossRef]
- Kohlhuber, N.; Musl, O.; Sulaeva, I.; Böhmdorfer, S.; Sumerskii, I.; Ters, T.; Rosenau, T.; Potthast, A. Adding Speed to Lignin Analysis Straight from Black Liquors. ACS Sustain. Chem. Eng. 2023, 11, 15294–15301. [Google Scholar] [CrossRef]
- Kumar, V.; Malyan, S.K.; Apollon, W.; Verma, P. Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach. Renew. Energy 2024, 228, 120566. [Google Scholar] [CrossRef]
- Verma, O.P.; Manik, G.; Sethi, S.K. A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control. Renew. Sustain. Energy Rev. 2019, 100, 90–109. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter 1—Feedstocks. In Gasification of Unconventional Feedstocks; Speight, J.G., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 1–29. [Google Scholar]
- Speight, J.G. Chapter 13—Production of bio-syngas and bio-hydrogen by gasification. In Handbook of Biofuels Production, 3rd ed.; Luque, R., Lin, C.S.K., Wilson, K., Du, C., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 419–448. [Google Scholar]
- Pola, L.; Collado, S.; Oulego, P.; Díaz, M. Kraft black liquor as a renewable source of value-added chemicals. Chem. Eng. J. 2022, 448, 137728. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, P. Microbial valorization of kraft black liquor for production of platform chemicals, biofuels, and value-added products: A critical review. J. Environ. Manag. 2024, 366, 121631. [Google Scholar] [CrossRef]
- Singh, S.K.; Matsagar, B.M.; Dhepe, P.L. Lignocellulosic biomass analysis: Acidic lignin recovery, characterisation, and depolymerisation. Biomass Convers. Biorefinery 2024, 14, 5239–5249. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Fernandes, M.; Roberto, I.C. Lignin recovery from brewer’s spent grain black liquor. Carbohydr. Polym. 2007, 70, 218–223. [Google Scholar] [CrossRef]
- Gbenebor, O.P.; Olanrewaju, O.A.; Usman, M.A.; Adeosun, S.O. Lignin from Brewers’ Spent Grain: Structural and Thermal Evaluations. Polymers 2023, 15, 2346. [Google Scholar] [CrossRef] [PubMed]
- Hubbe, M.A.; Alén, R.; Paleologou, M.; Kannangara, M.; Kihlman, J. Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review. BioResources 2019, 14, 2300–2351. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Kong, F.; Lucia, L.A.; Lou, R. Dissolution of pentosan in corn stalk by hot water and purification using ion exchange resin. Cellul. Chem. Technol. 2016, 50, 669–674. [Google Scholar]
- Dalli, S.S.; Patel, M.; Rakshit, S.K. Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass Bioenergy 2017, 105, 402–410. [Google Scholar] [CrossRef]
- Kumar, V.; Krishania, M.; Preet Sandhu, P.; Ahluwalia, V.; Gnansounou, E.; Sangwan, R.S. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour. Technol. 2018, 251, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Iqbal, H.M.N.; Show, P.L.; Rahdar, A.; Bilal, M. Upgrading recalcitrant lignocellulosic biomass hydrolysis by immobilized cellulolytic enzyme–based nanobiocatalytic systems: A review. Biomass Convers. Biorefinery 2024, 14, 4485–4509. [Google Scholar] [CrossRef]
- Lauwaert, J.; Stals, I.; Lancefield, C.S.; Deschaumes, W.; Depuydt, D.; Vanlerberghe, B.; Devlamynck, T.; Bruijnincx, P.C.A.; Verberckmoes, A. Pilot scale recovery of lignin from black liquor and advanced characterization of the final product. Sep. Purif. Technol. 2019, 221, 226–235. [Google Scholar] [CrossRef]
- Purolite™ A400. Available online: https://www.purolite.com/product-pdf/A400.pdf (accessed on 15 August 2024).
- Purolite™ A100Plus. Available online: https://www.purolite.com/product-pdf/A100PLUS.pdf (accessed on 15 August 2024).
- Purolite™ C100H. Available online: https://www.purolite.com/product-pdf/C100H.pdf (accessed on 16 August 2024).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Rudjito, R.C.; Jiménez-Quero, A.; Hamzaoui, M.; Kohnen, S.; Vilaplana, F. Tuning the molar mass and substitution pattern of complex xylans from corn fibre using subcritical water extraction. Green Chem. 2020, 22, 8337–8352. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, J. NREL/TP-510-42622: Determination of ash in biomass. Natl. Renew. Energy Lab. 2005, 36, 302–305. [Google Scholar]
- Zhang, J.; Wang, Y.-H.; Qu, Y.-S.; Wei, Q.-Y.; Li, H.-Q. Effect of the organizational difference of corn stalk on hemicellulose extraction and enzymatic hydrolysis. Ind. Crops Prod. 2018, 112, 698–704. [Google Scholar] [CrossRef]
- Cheşcă, A.M.; Nicu, R.; Tofănică, B.M.; Puiţel, A.C.; Gavrilescu, D. Optimization of Soda Pulping Process of Corn Stalks by Response Surface Modelling. Cellul. Chem. Technol. 2018, 52, 823–831. [Google Scholar]
- Zhang, Y.; Wang, H.; Sun, X.; Wang, Y.; Liu, Z. Separation and characterization of biomass components (cellulose, hemicellulose, and lignin) from corn stalk. BioResources 2021, 16, 7205–7219. [Google Scholar] [CrossRef]
- Daud, Z.; Hatta, M.M.; Kassim, A.S.M.; Awang, H.; Aripin, A.M. Analysis the chemical composition and fiber morphology structure of corn stalk. Aust. J. Basic Appl. Sci. 2013, 7, 401–405. [Google Scholar]
- Fagbemigun, T.K.; Fagbemi, O.; Otitoju, O.; Mgbachiuzor, E.; Igwe, C. Pulp and paper-making potential of corn husk. Int. J. AgriSci. 2014, 4, 209–213. [Google Scholar]
- Hájková, K.; Jurczyková, T.; Filipi, M.; Bouček, J. Chemical pulp from corn stalks. Biotechnol. Rep. 2023, 37, e00786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Study on the degradation conditions of corn stalks by Asian corn borer digestive enzymes combined with white-rot fungus. Sci. Prog. 2024, 107, 368504241239447. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fan, S.; Yang, T.; Zhang, H.; Chen, Y. Study on the Characteristics of Pyrolysis Gas and Oil from Corn Stalk Pyrolysis. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 032099. [Google Scholar] [CrossRef]
- Lizotte, P.-L.; Savoie, P.; De Champlain, A. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef]
- Wang, Z.; Dien, B.S.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast. Bioresour. Technol. 2019, 282, 103–109. [Google Scholar] [CrossRef]
- Lazar, L.; Bandrabur, B.; Tataru-Fărmuş, R.-E.; Drobotă, M.; Bulgariu, L.; Gutt, G. FTIR analysis of ion exchange resins with application in permanent hard water softening. Environ. Eng. Manag. J. 2014, 13, 2145–2152. [Google Scholar] [CrossRef]
- Indarawis, K.A.; Boyer, T.H. Superposition of anion and cation exchange for removal of natural water ions. Sep. Purif. Technol. 2013, 118, 112–119. [Google Scholar] [CrossRef]
- Shibukawa, M.; Taguchi, A.; Suzuki, Y.; Saitoh, K.; Hiaki, T.; Yarita, T. Evaluation of the thermal effect on separation selectivity in anion-exchange processes using superheated water ion-exchange chromatography. Analyst 2012, 137, 3154–3159. [Google Scholar] [CrossRef] [PubMed]
- Hatsis, P.; Lucy, C.A. Effect of temperature on retention and selectivity in ion chromatography of anions. J. Chromatogr. A 2001, 920, 3–11. [Google Scholar] [CrossRef]
- Kaleta, J.; Papciak, D.; Puszkarewicz, A. Using ion exchange process in removal of selected organic pollution from aqueous solutions. J. Ecol. Eng. 2018, 19, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Naim, M.M.; Al-harby, N.F.; El Batouti, M.; Elewa, M.M. Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors. Molecules 2022, 27, 1593. [Google Scholar] [CrossRef]
- Hou-Rui, Z.; Jian-Zhi, Z.; Cheng-Xin, H.; Hong, F.; Ai-Hua, C. Inhibitory Effects of UV-Absorption Compounds in Hemicellulose Hydrolysate on Xylitol Production by Yeast. In Modern Multidisciplinary Applied Microbiology; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 596–601. [Google Scholar]
- Cheng, H.; Feng, Q.; Wang, D.; Wang, P.; Liu, H.; Zhan, H.; Liu, Y.; Xie, Y. Separation, purification and characterization of corn stover hemicelluloses. Cell. Chem. Technol. 2017, 51, 215–222. [Google Scholar]
- Goldmann, W.M.; Ahola, J.; Mankinen, O.; Kantola, A.M.; Komulainen, S.; Telkki, V.-V.; Tanskanen, J. Determination of phenolic hydroxyl groups in technical lignins by ionization difference ultraviolet spectrophotometry (∆ε-IDUS method). Period. Polytech. Chem. Eng. 2016, 61, 1–9. [Google Scholar] [CrossRef]
- Wyman, C.E.; Balan, V.; Dale, B.E.; Elander, R.T.; Falls, M.; Hames, B.; Holtzapple, M.T.; Ladisch, M.R.; Lee, Y.Y.; Mosier, N.; et al. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour. Technol. 2011, 102, 11052–11062. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; She, D. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydr. Polym. 2014, 112, 701–720. [Google Scholar] [CrossRef]
- Raspolli Galletti, A.M.; D’Alessio, A.; Licursi, D.; Antonetti, C.; Valentini, G.; Galia, A.; Nassi o Di Nasso, N. Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. J. Spectrosc. 2015, 2015, 719042. [Google Scholar] [CrossRef]
- Morales-Ortega, A.; Carvajal-Millan, E.; López-Franco, Y.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Torres-Chavez, P.; Campa-Mada, A. Characterization of Water Extractable Arabinoxylans from a Spring Wheat Flour: Rheological Properties and Microstructure. Molecules 2013, 18, 8417–8428. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Matyakubov, H.B.; Masterova, Y.Y.; Kozlov, A.S.; Pryanichnikova, M.K.; Pynenkov, A.A.; Khluchina, N.A. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J. Anal. Chem. 2023, 78, 718–727. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophys. 2013, 8, 29–42. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Chylinska, M.; Kruk, B.; Zdunek, A. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydr. Polym. 2015, 115, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Ottah, V.E.; Ezugwu, A.L.; Ezike, T.C.; Chilaka, F.C. Comparative analysis of alkaline-extracted hemicelluloses from Beech, African rose and Agba woods using FTIR and HPLC. Heliyon 2022, 8, e09714. [Google Scholar] [CrossRef]
- Sun, R.C.; Tomkinson, J.; Ma, P.L.; Liang, S.F. Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydr. Polym. 2000, 42, 111–122. [Google Scholar] [CrossRef]
- Huang, L.-Z.; Ma, M.-G.; Ji, X.-X.; Choi, S.-E.; Si, C. Recent Developments and Applications of Hemicellulose from Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9, 690773. [Google Scholar] [CrossRef]
- Dafchahi, M.N.; Acharya, B. Green extraction of xylan hemicellulose from wheat straw. Biomass Convers. Biorefinery 2023, 14, 21229–21243. [Google Scholar] [CrossRef]
Sample Type | Glucan (%) | Xylan (%) | Galactan (%) | Arabinan (%) | CH Tot (%) | AIL (%) | ASL (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|
Raw CS | 35.65 | 18.42 | 0.85 | 2.69 | 57.61 | 25.36 | 1.14 | 3.81 |
CS pulp | 54.94 | 19.27 | 0.77 | 2.09 | 77.08 | 5.83 | 0.71 | 0.15 |
BLPP | 1.31 | 12.42 | 1.42 | 4.27 | 19.42 | 50.93 | 2.56 | 15.68 |
Sample Type | pH | C (mS·cm−1) | DM (g·L−1) | IM (g·L−1) | OM (g·L−1) | Glucan (g·L−1) | Xylan (g·L−1) | Galactan (g·L−1) | Arabinan (g·L−1) | CH (g·L−1) | L (g·L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
SPBL | 12.9 | 44.1 | 78.74 | 30.45 | 48.29 | 1.15 | 9.90 | 1.15 | 0.31 | 12.60 | 20.28 |
SPBL4.5 | 4.5 | 25.4 | 69.83 | 23.43 | 46.41 | 0.55 | 7.21 | 1.07 | 0.24 | 9.07 | 8.37 |
Exp. Run | X1-Resin Charge (g·mL−1) | X2-Temperature (°C) | X3-Contact Time (min) | E R1 (%) | E R2 (%) |
---|---|---|---|---|---|
1 | 0.10 | 35 | 105 | 73.9 | 80.3 |
2 | 0.05 | 50 | 30 | 43.7 | 46.4 |
3 | 0.15 | 50 | 30 | 56.1 | 65.4 |
4 | 0.15 | 35 | 105 | 88.0 | 86.5 |
5 | 0.10 | 35 | 105 | 73.9 | 79.1 |
6 | 0.05 | 50 | 180 | 72.1 | 76.1 |
7 | 0.10 | 35 | 30 | 43.1 | 61.8 |
8 | 0.15 | 20 | 30 | 65.6 | 76.0 |
9 | 0.10 | 20 | 105 | 71.6 | 82.4 |
10 | 0.05 | 20 | 30 | 46.2 | 40.6 |
11 | 0.10 | 35 | 105 | 73.9 | 80.7 |
12 | 0.10 | 35 | 105 | 72.7 | 79.6 |
13 | 0.05 | 20 | 180 | 51.4 | 72.8 |
14 | 0.10 | 35 | 105 | 76.6 | 79.1 |
15 | 0.10 | 35 | 180 | 77.8 | 87.1 |
16 | 0.15 | 50 | 180 | 92.8 | 95.2 |
17 | 0.10 | 50 | 105 | 80.7 | 87.4 |
18 | 0.10 | 35 | 105 | 73.9 | 79.8 |
19 | 0.15 | 20 | 180 | 89.6 | 93.7 |
20 | 0.05 | 35 | 105 | 62.7 | 62.6 |
21 | 0.05 | 50 | 105 | 66.9 | 70.1 |
22 | 0.05 | 20 | 105 | 58.5 | 62.1 |
23 | 0.15 | 20 | 30 | 79.0 | 89.4 |
24 | 0.15 | 50 | 105 | 87.5 | 91.3 |
Model F Value | Adequate Precision | R2 | R2 Adjusted | Predicted R2 | |
---|---|---|---|---|---|
Model 1 (R1) | 39.6 | 23.8 | 0.94 | 0.92 | 0.83 |
Model 2 (R2) | 71.5 | 31.2 | 0.96 | 0.95 | 0.89 |
β0 | X1 | X2 | X3 | X1X2 | X2X3 | X12 | X32 | |
---|---|---|---|---|---|---|---|---|
Model 1 (R1) | 6.3 | 231.0 | 0.0918 | 0.409 | −5.16 | 0.00512 | 972 | −0.002 |
Model 2 (R2) | −8.03 | 648.0 | 0.224 | 0.380 | −2.67 | 0.00108 | 1580 | −0.0013 |
Resin Type | X1—Resin Charge (g·mL−1) | X2—Temperature (°C) | X3—Contact Time (min) | Predicted E (%) | Experimental E (%) |
---|---|---|---|---|---|
R1 | 0.1 | 50 | 167 | 73.3 | 70.2 |
R2 | 0.1 | 50 | 180 | 80.2 | 79.6 |
Sample Type | Glucan (%) | Xylan (%) | Galactan (%) | Arabinan (%) | HC Tot (%) | AIL (%) | ASL (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|
HC_SPBL4.5 | 2.43 | 44.43 | 1.86 | 8.93 | 57.65 | 0.35 | 2.54 | 11.96 |
HC_CS AC | 2.97 | 56.71 | 2.78 | 12.12 | 74.58 | 0.55 | 1.01 | 11.15 |
HC_CS R1 | 3.75 | 60.89 | 2.55 | 10.98 | 78.17 | 0.25 | 0.75 | 10.14 |
HC_CS R2 | 3.53 | 64.46 | 2.19 | 11.00 | 81.18 | 0.22 | 0.55 | 10.03 |
HC_CS R1 R3 | 4.96 | 74.36 | 3.03 | 13.95 | 96.31 | 0.29 | 0.78 | 0.15 |
HC_CS R2 R3 | 3.93 | 75.28 | 2.44 | 12.68 | 94.34 | 0.27 | 0.82 | 0.13 |
Sample Type | Raw HC (g/100 g CS) | Pure HC (g/100 g CS) | RY CS (%) | RY BL (%) | RY SPBL4.5 (%) |
---|---|---|---|---|---|
HC_SPBL4.5 | 12.3 | 7.09 | 32.29 | 56.68 | 78.18 |
HC_CS R1 | 10.9 | 8.52 | 38.80 | 68.11 | 93.94 |
HC_CS R2 | 10.2 | 8.28 | 37.71 | 66.19 | 91.29 |
HC_CS R1 R3 | 8.9 | 8.57 | 39.03 | 68.52 | 94.50 |
HC_CS R2 R3 | 8.6 | 8.11 | 36.95 | 64.85 | 89.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puițel, A.C.; Balan, C.D.; Nechita, M.T. Corn Stalks-Derived Hemicellulosic Polysaccharides: Extraction and Purification. Polysaccharides 2025, 6, 2. https://doi.org/10.3390/polysaccharides6010002
Puițel AC, Balan CD, Nechita MT. Corn Stalks-Derived Hemicellulosic Polysaccharides: Extraction and Purification. Polysaccharides. 2025; 6(1):2. https://doi.org/10.3390/polysaccharides6010002
Chicago/Turabian StylePuițel, Adrian Cătălin, Cătălin Dumitrel Balan, and Mircea Teodor Nechita. 2025. "Corn Stalks-Derived Hemicellulosic Polysaccharides: Extraction and Purification" Polysaccharides 6, no. 1: 2. https://doi.org/10.3390/polysaccharides6010002
APA StylePuițel, A. C., Balan, C. D., & Nechita, M. T. (2025). Corn Stalks-Derived Hemicellulosic Polysaccharides: Extraction and Purification. Polysaccharides, 6(1), 2. https://doi.org/10.3390/polysaccharides6010002