Discussions on the Adsorption Behaviors Affected by the Differences Between Graphene Oxide and Graphene Grafted by Chitosan
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of Graphene Oxide Thin Film
2.3. Preparation of Graphene Thin Film
2.4. Equipment for Thin Film Characterization
2.5. Adsorption Tests
2.5.1. Microbalance Adsorption System
2.5.2. Thin Film Adsorption System
3. Results and Discussion
3.1. Adsorption of CO2
3.2. Adsorbent Characterization
3.3. Adsorption Performance for the Prepared Adsorbents
3.4. Adsorption Isotherm Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghuge, N.S.; Mandal, D. Room-temperature absorption of carbon dioxide on an improved soda lime-based absorber. Ind. Eng. Chem. Res. 2023, 62, 7592–7598. [Google Scholar] [CrossRef]
- Konopacka-Łyskawa, D.; Amibo, T.A.; Dobrzyniewski, D.; Łapinski, M. Improving carbon dioxide capture in aqueous ammonia solutions by fine SiO2 particles. Chem. Process Eng. New Front. 2023, 44, e16. [Google Scholar] [CrossRef]
- H€ohler, F.; Deschermeier, R.; Rehfeldt, S.; Klein, H. Gas solubilities of carbon dioxide in methanol, acetone, mixtures of methanol and water, and mixtures of methanol and acetone. Fluid Phase Equilibr. 2018, 459, 186–195. [Google Scholar] [CrossRef]
- Guo, B.; Chang, L.; Xiel, K. Adsorption of carbon dioxide on activated carbon. J. N. Gas Chem. 2006, 15, 223–229. [Google Scholar] [CrossRef]
- Somy, A.; Mehrnia, M.R.; Amrei, H.D.; Ghanizadeh, A.; Safari, M. Adsorption of carbon dioxide using impregnated activated carbon promoted by Zinc. Int. J. Greenh. Gas Con. 2009, 3, 249–254. [Google Scholar] [CrossRef]
- Šulc, R.; Kos, M. Experimental study of oxygen separation in oxygen-pressure swing adsorption unit. Chem. Engineer. Trans. 2022, 94, 481–486. [Google Scholar]
- Mondino, G.; Grande, C.A.; Blom, R.; Nord, L.O. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int. J. Greenh. Gas Con. 2019, 85, 58–70. [Google Scholar] [CrossRef]
- Sato, Y.; Kansha, Y. An energy–saving membrane process for carbon dioxide purification. Chem. Engineer. Trans. 2022, 94, 709–714. [Google Scholar]
- Zheng, H.; He, Y.; Zhu, Y.; Liu, L.; Cui, X. Novel procedure of CO2 capture of the CaO sorbent activator on the reaction of one-part alkaliactivated slag. RSC Adv. 2021, 11, 12476. [Google Scholar] [CrossRef] [PubMed]
- Flowers, P.A. Small–scale production of high-density dry ice: A variant combination of two classic demonstrations. J. Chem. Educ. 2009, 86, 470–471. [Google Scholar] [CrossRef]
- Kaliyan, N.; Gayathri, P.; Alagusundaram, K.; Morey, R.V.; Wilcke, W.F. Applications of carbon dioxide in food and processing industries: Current status and future thrusts. In Proceedings of the ASABE Annual International Meeting 076113, Minneapolis, Minnesota, 17–20 June 2007. [Google Scholar]
- Moritaka, H.; Kitade, M.; Sawamura, S.I.; Takihara, T.; Awano, I.; Ono, T.; Tamine, K.; Hori, K. Effect of carbon dioxide in carbonated drinks on linguapalatal swallowing pressure. Chem. Senses 2014, 39, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Eweis, D.S.; Abed, F.; Stiban, J. Carbon dioxide in carbonated beverages induces ghrelin release and increased food consumption in male rats: Implications on the onset of obesity. Obes. Res. Clin. Pract. 2017, 11, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Dalton, T. Failure analysis of a carbon dioxide fire extinguisher. JFAPBC 2005, 3, 51–56. [Google Scholar] [CrossRef]
- Nowak, M.; Semba, D.; Misic, D.; Półbrat, T.; Stojanovic, D.; Stanojevic, S.; Trusek, A.; Zizovic, I. The transformation of cellulose acetate into a new biocidal polymer by effluent-free grafting in supercritical carbon dioxide. J. Supercrit. Fluid 2023, 202, 106058. [Google Scholar] [CrossRef]
- Lev, D.; Herscovitz, J. Carbon dioxide based heated gas propulsion system for nano-satellites. In Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 7–10 August 2017. SSC17-S2-08. [Google Scholar]
- Razzak, F.S.A. Review on green solvent supercritical carbon dioxide and its chemical reactions. J. Sci. Res. Banaras Hindu Univ. 2021, 65, 17–22. [Google Scholar] [CrossRef]
- Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluid. 2004, 28, 121–191. [Google Scholar] [CrossRef]
- Okoye-Chine, C.G.; Otun, K.; Shiba, N.; Rashama, C.; Ugwu, S.N.; Onyeaka, H.; Okeke, C.T. Conversion of carbon dioxide into fuels—A review. J. CO2 Util. 2022, 62, 102099. [Google Scholar] [CrossRef]
- Hafeez, S.; Harkou, E.; Al-Salem, S.M.; Goula, M.A.; Dimitratos, N.; Charisiou, N.D.; Villa, A.; Bansode, A.; Leeke, G.; Manos, G.; et al. Hydrogenation of carbon Dioxide (CO2) to fuels in microreactors: A review of set-ups and value-added chemicals production. Reac. Chem. Eng. 2022, 7, 795–812. [Google Scholar] [CrossRef]
- Francis, A.; Ramyashree, M.S.; Priya, S.S.; Kumar, S.H.; Sudhakar, K.; Fan, W.K.; Tahir, M. Carbon dioxide hydrogenation to methanol: Process simulation and optimization studies. Int. J. Hydrogen Energ. 2022, 47, 36418–36432. [Google Scholar] [CrossRef]
- Schossig, J.; Gandotra, A.; Arizapana, K.; Weber, D.; Wildy, M.; Wei, W.; Xu, K.; Yu, L.; Chimenti, R.; Mantawy, I.; et al. CO2 to value-added chemicals: Synthesis and performance of mono- and bimetallic nickel–cobalt nanofiber catalysts. Catalysts 2023, 13, 1017. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, K.; Xu, B.; Li, J.; Hu, C.; Yuan, J.S.; Dai, S.Y. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem. 2022, 8, 3363–3381. [Google Scholar] [CrossRef]
- Mbabazi, R.; Wendt, O.F.; Nyanzi, S.A.; Naziriwo, B.; Tebandeke, E. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts. Res. Chem. 2022, 4, 100542. [Google Scholar] [CrossRef]
- Ballamine, A.; Kotni, A.; Llored, J.P.; Caillol, S. Valuing CO2 in the development of polymer materials. Sci. Technol. Energy Transit. 2022, 77, 1. [Google Scholar] [CrossRef]
- Gandhi, R.; Moses, A.; Baral, S.S. Fundamental study of the photocatalytic reduction of CO2: A short review of thermodynamics, kinetics and mechanisms. Chem. Process Eng. 2022, 43, 223–228. [Google Scholar]
- Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A.A.; Wood, T.E.; Li, H.; Loh, J.Y.Y.; Dong, Y.; et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381. [Google Scholar] [CrossRef]
- Fua, Z.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F.; Xie, T.; Zhong, Y.; Wang, D.; Li, J.; Li, X.; et al. Photocatalytic conversion of carbon dioxide: From products to design the catalysts. J. CO2 Util. 2019, 34, 63–73. [Google Scholar] [CrossRef]
- House, K.Z.; Schrag, D.P.; Harvey, C.F.; Lackner, K.S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. USA 2006, 103, 12291–12295. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Takahashi, T.; Wanninkhof, R. Uptake and storage of carbon dioxide in the ocean: The global C02 survey. Oceanography 2001, 14, 18–32. [Google Scholar] [CrossRef]
- Goldthorpe, S. Potential for very deep ocean storage of CO2 without ocean acidification: A discussion paper. Enrgy. Proced. 2017, 114, 5417–5429. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramaprabhu, S. Carbon dioxide adsorption in graphene sheets. Aip Adv. 2011, 1, 032152. [Google Scholar] [CrossRef]
- Naseri, A.; Barati, R.; Rasoulzadeh, F.; Bahram, M. Studies on adsorption of some organic dyes from aqueous solution onto graphene nanosheets. Iran. J. Chem. Chem. Eng. 2015, 34, 51–60. [Google Scholar]
- Takeuchi, K.; Yamamoto, S.; Hamamoto, Y.; Shiozawa, Y.; Tashima, K.; Fukidome, H.; Koitaya, T.; Mukai, K.; Yoshimoto, S.; Suemitsu, M.; et al. Adsorption of CO2 on graphene: A combined TPD, XPS, and vdW-DF study. J. Phys. Chem. C 2017, 121, 2807–2814. [Google Scholar] [CrossRef]
- Meconi, G.M.; Tomovska, R.; Zangi, R. Adsorption of CO2 gas on graphene–polymer composites. J. CO2 Util. 2019, 32, 92–105. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Graphene embedded with transition metals for capturing carbon dioxide: Gas detection study using QM methods. Clean Technol. 2023, 5, 403–417. [Google Scholar] [CrossRef]
- Fathalian, F.; Moghadamzadeh, H.; Hemmati, A.; Ghaemi, A. Efficient CO2 adsorption using chitosan, graphene oxide, and zinc oxide composite. Sci. Rep. 2024, 14, 3186. [Google Scholar] [CrossRef]
- Zuo, P.P.; Feng, H.F.; Xu, Z.Z.; Zhang, L.F.; Zhang, Y.L.; Xia, W.; Zhang, W.Q. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem. Cent. J. 2013, 7, 39. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Giraldo, L.; Vargas, D.P.J.; Moreno-Piraján, C. Study of CO2 adsorption on chemically modified activated carbon with nitric acid and ammonium aqueous. Front. Chem. 2020, 8, 543452. [Google Scholar] [CrossRef] [PubMed]
- Keramati, M.; Ghoreyshi, A.A. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E 2014, 57, 161–168. [Google Scholar] [CrossRef]
- Hsan, N.; Dutta, P.K.; Kumar, S.; Das, N.; Koh, J. Capture and chemical fixation of carbon dioxide by chitosan grafted multiwalled carbon nanotubes. J. CO2 Util. 2020, 41, 101237. [Google Scholar] [CrossRef]
Property | G 1 | GO 2 | GO Grafted by Adding 0.3% CTS 3 | GO Grafted by Adding 0.6% CTS | GO Grafted by Adding 0.9% CTS | GO Grafted by Adding 1.2% CTS | G Grafted by Adding 0.9% CTS |
---|---|---|---|---|---|---|---|
surface area (m2/g) | 856 | 883 | 861 | 843 | 824 | 781 | 801 |
Total volume (cm3/g) | 0.68 | 0.71 | 0.69 | 0.66 | 0.64 | 0.58 | 0.62 |
Vmicro | 0.20 | 0.21 | 0.21 | 0.20 | 0.19 | 0.17 | 0.18 |
Vmeso | 0.38 | 0.39 | 0.38 | 0.36 | 0.35 | 0.32 | 0.34 |
Vmacro | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | 0.09 | 0.10 |
Pore diameter (nm) | 2.98 | 3.02 | 2.45 | 2.43 | 2.41 | 2.37 | 2.39 |
Parameter | G 1 | GO 2 | GO Grafted by 0.3% CTS 3 | GO Grafted by 0.6% CTS | GO Grafted by 0.9% CTS | GO Grafted by 1.2% CTS | G Grafted by 0.9% CTS |
---|---|---|---|---|---|---|---|
qe (mg/g) | 362 | 373 | 389 | 400 | 423 | 426 | 419 |
K (mmHg−1) | 0.123 | 0.129 | 0.252 | 0.362 | 0.461 | 0.479 | 0.395 |
t | 0.516 | 0.513 | 0.459 | 0.447 | 0.436 | 0.433 | 0.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-C.; Chen, H.-W.; Han, J.-L.; Wu, H.-T. Discussions on the Adsorption Behaviors Affected by the Differences Between Graphene Oxide and Graphene Grafted by Chitosan. Polysaccharides 2025, 6, 3. https://doi.org/10.3390/polysaccharides6010003
Chung C-C, Chen H-W, Han J-L, Wu H-T. Discussions on the Adsorption Behaviors Affected by the Differences Between Graphene Oxide and Graphene Grafted by Chitosan. Polysaccharides. 2025; 6(1):3. https://doi.org/10.3390/polysaccharides6010003
Chicago/Turabian StyleChung, Chin-Chun, Hua-Wei Chen, Jin-Lin Han, and Hung-Ta Wu. 2025. "Discussions on the Adsorption Behaviors Affected by the Differences Between Graphene Oxide and Graphene Grafted by Chitosan" Polysaccharides 6, no. 1: 3. https://doi.org/10.3390/polysaccharides6010003
APA StyleChung, C.-C., Chen, H.-W., Han, J.-L., & Wu, H.-T. (2025). Discussions on the Adsorption Behaviors Affected by the Differences Between Graphene Oxide and Graphene Grafted by Chitosan. Polysaccharides, 6(1), 3. https://doi.org/10.3390/polysaccharides6010003