Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments
Abstract
:1. Introduction
2. Diamond Growth and Properties
2.1. Diamond Production by MWPECVD Technique
2.2. Diamond Properties
3. The Diamond Detector
- Metallization. Conventional or inadequate contact fabrication may result in poor mechanical adhesion, polarization effects, and unrepeatable results.
- Mechanical adhesion. The mechanical adhesion of the metal electrode on the diamond surface. A flat, smooth surface (diamond film is polished before use) may presents few adhesion points, and a metal thermally evaporated on diamond may not adhere completely. The metal could peel off (after some operational time), and the electrical signal could deteriorate, reducing the device lifetime and stability. The peeling was observed in a previous study [110].
- Polarization effects. Polarization phenomena occur when electric currents pass through diamond and the electrical contact is not able to extract and/or inject carriers fast enough. The detector loses its stability because charge accumulation occurs within the crystal. The trapped carriers establish an electric field that is opposite to the field produced by the external bias. This point is very important for reliable long-lasting operation as well for operation in harsh environments. Polarization is observed after strong irradiation [127] as well as at high temperature (T > 220–240 °C, [128]). Polarization will be further discussed in Section 3.8.
3.1. Charge Carriers
3.2. Mobility and Drift Velocity
3.3. Temperature Effects on Mobility
3.4. Charge Collection Efficiency
3.5. Charge Induction and the Ramo-Shockley Theorem
3.6. Shape of the Electrical Signal
3.7. Carriers’ Trapping-Detrapping
3.8. Polarization
4. Neutron Detection with Diamond
4.1. Neutron-Carbon Interaction
4.2. Pulsed Fast Neutron Detection
- (1)
- there are quite a lot of them, despite the 1/E spectrum, as they cover a wide energy range (e.g., all neutrons above about 50 MeV have flight times from the moderator grouped within about 100 ns);
- (2)
- elastic scattering at high energies is quite effective at generating carbon recoils with sufficient energy to exceed the detection threshold;
- (3)
- non-elastic scattering cross-section is quite high at high energies.
4.3. Thermal-Neutron Detection
5. Radiation Hardness
Effect of Neutron Irradiation
6. Operation of Diamond Detectors at High Temperature
Analysis of Electric Signal Produced at HT
7. Open Issues and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hostader, R. Crystal counters. Nucleonics 1949, 4, 29. [Google Scholar]
- Paoletti, A.; Tucciarone, A. (Eds.) The physics of diamond. In Proceedings of the International School of Physics Enrico Fermi—Course CXXXV, Varenna, Italy, 23 July–2 August 1996; IOS Press: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Koizumi, S.; Nebel, C.E.; Nesladek, M. (Eds.) Physics and Application of CVD Diamond; Wiley-VCH GmbH Co. KGaA: Wetnhetm, Germany, 2008; ISBN 978-3-527-40801-6. [Google Scholar]
- Nebel, C.E. Electronic properties of diamond. Semicon. Sci. Technol. 2003, 18, S1–S11. [Google Scholar] [CrossRef]
- Nebel, C.E.; Ristein, J. (Eds.) Thin-Film Diamond I; Elsevier: Amsterdam, The Netherlands, 2003; Volume 76, ISBN 978-0-12-752185-5. [Google Scholar]
- Kozlov, S.; Belcarz, E.; Hage-Ali, M.; Stuck, R.; Siffert, P. Diamond nuclear radiation detectors. Nucl. Instrum. Methods 1974, 117, 277–283. [Google Scholar] [CrossRef]
- Kozlov, S.F.; Stuck, R.; Hage-Ali, M.; Siffert, P. Preparation and Characteristics of Natural Diamond Nuclear Radiation Detectors. IEEE Trans. Nucl. Sci. 1975, 22, 160–170. [Google Scholar] [CrossRef]
- Amosov, V.; Ivanov, A.; Kaschuck, Y.A.; Krasilnikov, A. Change of electrical and optical properties of natural type-IIa diamond under intensive fast neutron irradiation. In Proceedings of the Nuclear Science Symposium and Medical Imaging Conference, Albuquerque, NM, USA, 9–15 November 1997. [Google Scholar]
- Krasilnikov, A.; Amosov, V.; Kaschuck, Y. Natural diamond detector as high energy particles spectrometer. In Proceedings of the Nuclear Science Symposium Conference Record, Albuquerque, NM, USA, 9–15 November 1997. [Google Scholar]
- Nava, F.; Canali, C.; Artuso, M.; Gatti, E.; Manfredi, P.F.; Kozlov, S.F. Transport Properties of Natural Diamond Used as Nuclear Particle Detector for a Wide Temperatue Range. IEEE Trans. Nucl. Sci. 1979, 26, 308–315. [Google Scholar] [CrossRef]
- Canali, C.; Gatti, E.; Kozlov, S.; Manfredi, P.; Manfredotti, C.; Nava, F.; Quirini, A. Electrical properties and performances of natural diamond nuclear radiation detectors. Nucl. Instrum. Methods 1979, 160, 73–77. [Google Scholar] [CrossRef]
- Pillon, M.; Angelone, M.; Krasilnikov, A. 14 MeV neutron spectra measurements with 4% energy resolution using a type IIa diamond detector. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1995, 101, 473–483. [Google Scholar] [CrossRef]
- Vatnitsky, S.; Jarvinen, H. Application of a natural diamond detector for the measurement of relative dose distributions in radiotherapy. Phys. Med. Biol. 1993, 38, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugtenburg, R.P.; Johnston, K.; Chalmers, G.J.; Beddoe, A.H. Application of diamond detectors to the dosimetry of 45 and 100 kVp therapy beams: Comparison with a parallel-plate ionization chamber and Monte Carlo. Phys. Med. Biol. 2001, 46, 2489–2501. [Google Scholar] [CrossRef] [PubMed]
- Laub, W.U.; Kaulich, T.W.; Nüsslin, F. A diamond detector in the dosimetry of high-energy electron and photon beams. Phys. Med. Biol. 1999, 44, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Hoban, P.W.; Heydarian, M.; Beckham, W.A.; Beddoe, A.H. Dose rate dependence of a PTW diamond detector in the dosimetry of a 6 MV photon beam. Phys. Med. Biol. 1994, 39, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, M.; Prestopino, G.; Verona, C.; Verona-Rinati, G. Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume. Med. Phys. 2016, 43, 5205–5212. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, M.; Prestopino, G.; Verona, C.; Rinati, G.V.; Ciocca, M.; Mirandola, A.; Mairani, A.; Raffaele, L.; Magro, G. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams. Med. Phys. 2015, 42, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.; Locher, R. Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 1998, 61, 1665–1710. [Google Scholar] [CrossRef]
- Davis, G. (Ed.) Properties and Growth of Diamond; INSPEC Institution of Electrical Engineers: London, UK, 1994; ISBN 13978-0852968758. [Google Scholar]
- Pan, L.S.; Kania, D.R. (Eds.) Diamond Electronics Properties and Applications; Kluwer Academic Publisher: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 1995; ISBN 978-1-4615-2257-7. [Google Scholar]
- Burns, R.; Hansen, J.; Spits, R.; Sibanda, M.; Welbourn, C.; Welch, D. Growth of high purity large synthetic diamond crystals. Diam. Relat. Mater. 1999, 8, 1433–1437. [Google Scholar] [CrossRef]
- Tallaire, A.; Achard, J.; Silva, F.; Brinza, O.; Gicquel, A. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus Phys. 2013, 14, 169–184. [Google Scholar] [CrossRef]
- Schwander, M.; Partes, K. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 2011, 20, 1287–1301. [Google Scholar] [CrossRef]
- Liang, Q.; Yan, C.-S.; Meng, Y.; Lai, J.; Krasnicki, S.; Mao, H.-K.; Hemley, R.J. Recent advances in high-growth rate single-crystal CVD diamond. Diam. Relat. Mater. 2009, 18, 698–703. [Google Scholar] [CrossRef]
- Kaneko, J.; Tanaka, T.; Imai, T.; Tanimura, Y.; Katagiri, M.; Nishitani, T.; Takeuchi, H.; Sawamura, T.; Iida, T. Radiation detector made of a diamond single crystal grown by a chemical vapor deposition method. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 505, 187–190. [Google Scholar] [CrossRef]
- Kaneko, J.; Teraji, T.; Hirai, Y.; Shiraishi, M.; Kawamura, S.; Yoshizaki, S.; Ito, T.; Ochiai, K.; Nishitani, T.; Sawamura, T. Response function measurement of layered type CVD single crystal diamond radiation detectors for 14 MeV neutrons. Rev. Sci. Instrum. 2004, 75, 3581–3584. [Google Scholar] [CrossRef]
- Balducci, A.; Marinelli, M.; Milani, E.; Morgada, M.E.; Tucciarone, A.; Rinati, G.V.; Angelone, M.; Pillon, M. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 193509. [Google Scholar] [CrossRef]
- Martineau, P.M.; Lawson, S.C.; Taylor, A.J.; Quinn, S.J.; Evans, D.J.F.; Crowder, M.J. Identification of Synthetic Diamond Grown Using Chemical Vapor Deposition (CVD). Gems Gemol. 2004, 40, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S. Characterization of the Electrical Properties of Polycrystalline Diamond Films. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1994. [Google Scholar]
- Angelone, M.; Pillon, M.; Marinelli, M.; Milani, E.; Paoletti, A.; Tucciarone, A.; Pucella, G.; Rinati, G.V. Development and application of CVD diamond detectors to 14 MeV neutron flux monitoring. Radiat. Prot. Dosim. 2004, 110, 233–236. [Google Scholar] [CrossRef]
- Martone, M.; Angelone, M.; Pillon, M. The 14 MeV Frascati neutron generator. J. Nucl. Mater. 1994, 212–215, 1661–1664. [Google Scholar] [CrossRef]
- Angelone, M.; Pillon, M.; Bertalot, L.; Orsitto, F.; Marinelli, M.; Milani, E.; Pucella, G.; Tucciarone, A.; Rinati, G.V.; Popovichev, S.; et al. Time dependent 14MeV neutrons measurement using a polycrystalline chemical vapor deposited diamond detector at the JET tokamak. Rev. Sci. Instrum. 2005, 76, 013506. [Google Scholar] [CrossRef]
- Schmid, G.J.; Griffith, R.L.; Izumi, N.; Koch, J.A.; Lerche, R.A.; Moran, M.J.; Phillips, T.W.; Turner, R.E.; Glebov, V.Y.; Sangster, T.C.; et al. CVD diamond as a high bandwidth neutron detector for inertial confinement fusion diagnostics. Rev. Sci. Instrum. 2003, 74, 1828–1831. [Google Scholar] [CrossRef]
- Schmid, G.; Koch, J.; Lerche, R.; Moran, M. A neutron sensor based on single crystal CVD diamond. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 527, 554–561. [Google Scholar] [CrossRef]
- Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V.; Angelone, M.; Lattanzi, D.; Pillon, M.; Rosa, R.M.S.; et al. Synthetic single crystal diamond as a fission reactor neutron flux monitor. Appl. Phys. Lett. 2007, 90, 183509. [Google Scholar] [CrossRef]
- The RD42 Collaboration; Adams, W.; Meier, D. Development of CVD Diamond Radiation Detectors; Report CERN/EP 98-80; CERN: Geneva, Switzerland, 1988; Available online: https://cds.cern.ch/record/456577/files/cer-002208483.pdf (accessed on 20 October 2021).
- Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; et al. CVD diamond detectors for ionizing radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 435, 194–201. [Google Scholar] [CrossRef]
- Adam, W.; de Boer, W.; Borchi, E.; Bruzzi, M.; Colledani, C.; D’Angelo, P.; Dabrowski, V.; Dulinski, W.; van Eijk, B.; Eremin, V.; et al. Radiation hard diamond sensors for future tracking applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 565, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. Performance of irradiated CVD diamond micro-strip sensors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 476, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. The development of diamond tracking detectors for the LHC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 514, 79–86. [Google Scholar] [CrossRef]
- Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. Pulse height distribution and radiation tolerance of CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 447, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. Review of the development of diamond radiation sensors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 434, 131–145. [Google Scholar] [CrossRef]
- Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 426, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Tapper, R.J. Diamond detectors in particle physics. Rep. Prog. Phys. 2000, 63, 1273–1316. [Google Scholar] [CrossRef]
- Pernegger, H. High mobility diamonds and particle detectors. Phys. Status Sol. 2006, 203, 3299–3314. [Google Scholar] [CrossRef]
- Pomorski, M.; Berdermann, E.; Caragheorgheopol, A.; Ciobanu, M.; Kisš, M.; Martemiyanov, A.; Nebel, C.; Moritz, P. Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys. Status Sol. 2006, 203, 3152–3160. [Google Scholar] [CrossRef]
- Barberini, L.; Cadeddu, S.; Caria, M. A new material for imaging in the UV: CVD Diamond. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 127–137. [Google Scholar] [CrossRef]
- Koide, Y.; Liao, M.; Alvarez, J. Thermally stable solar-blind diamond UV photodetector. Diam. Relat. Mater. 2006, 15, 1962–1966. [Google Scholar] [CrossRef]
- Kaiser, A.; Kueck, D.; Benkart, P.; Munding, A.; Prinz, G.; Heittmann, A.; Huebner, H.; Sauer, R.; Kohn, E. Concept for diamond 3-D integrated UV sensor. Diam. Relat. Mater. 2006, 15, 1967–1971. [Google Scholar] [CrossRef]
- Mainwood, A. Recent developments of diamond detectors for particles and UV radiation. Semicond. Sci. Technol. 2000, 15, R55–R63. [Google Scholar] [CrossRef]
- Salvatori, S.; Girolami, M.; Oliva, P.; Bolshakov, A.; Ralchenko, V.; Konov, V. Diamond device architectures for UV laser monitoring. Laser Phys. 2016, 26, 084005. [Google Scholar] [CrossRef]
- Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; et al. Diamond Pixel Detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 465, 88–91. [Google Scholar] [CrossRef]
- Pomorski, M.; Berdermann, E.; Ciobanu, M.; Martemyianov, A.; Moritz, P.; Rebisz, M.; Marczewska, B. Characterisation of single crystal CVD diamond particle detectors for hadron physics experiments. Phys. Status Sol. 2005, 202, 2199–2205. [Google Scholar] [CrossRef]
- Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L. Development of multi-layer crystal detector and related front end electronics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 745, 82–87. [Google Scholar] [CrossRef]
- Bergonzo, P.; Brambilla, A.; Tromson, D.; Marshall, R.D.; Jany, C.; Foulon, F.; Gauthier, C.; Solé, V.A.; Rogalev, A.; Goulon, J. Diamond-based semi-transparent beam-position monitor for synchrotron radiation applications. J. Synchrotron Radiat. 1999, 6, 1–5. [Google Scholar] [CrossRef]
- Bohon, J.; Muller, E.; Smedley, J. Development of diamond-based X-ray detection for high-flux beamline diagnostics. J. Synchrotron Radiat. 2010, 17, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, M.; Milani, E.; Paoletti, A.; Tucciarone, A.; Rinati, G.V.; Luce, G.; Albergo, S.; Bellini, V.; Campagna, V.; Marchetta, C.; et al. Use of high-sensitivity diamond detectors in DC mode for detailed beam-profile measurements in particle accelerators. Diam. Relat. Mater. 2001, 10, 706–709. [Google Scholar] [CrossRef]
- Conte, G.; Mazzeo, G.; Salvatori, S.; Trucchi, D.M.; Ralchenko, V. Diamond photoconductive structures for positioning of X-ray beam. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 551, 83–87. [Google Scholar] [CrossRef]
- Garino, Y.; Giudice, A.L.; Manfredotti, C.; Marinelli, M.; Milani, E.; Tucciarone, A.; Rinati, G.V. Performances of homoepitaxial single crystal diamond in diagnostic x-ray dosimetry. Appl. Phys. Lett. 2006, 88, 151901. [Google Scholar] [CrossRef]
- Cirrone, G.; Cuttone, G.; Rafaele, L.; Sabini, M.G.; De Angelis, C.; Onori, S.; Pacilio, M.; Bucciolini, M.; Bruzzi, M.; Sciortino, S. Natural and CVD type diamond detectors as dosimeters in hadrontherapy applications. Nucl. Phys. B-Proc. Suppl. 2003, 125, 179–183. [Google Scholar] [CrossRef]
- Bucciolini, M.; Borchi, E.; Bruzzi, M.; Casati, M.; Cirrone, P.; Cuttone, G.; De Angelis, C.; Lovik, I.; Onori, S.; Raffaele, L.; et al. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 552, 189–196. [Google Scholar] [CrossRef]
- Fidanzio, A.; Azario, L.; Viola, P.; Ascarelli, P.; Cappelli, E.; Conte, G.; Piermattei, A. Photon and electron beam dosimetry with a CVD diamond detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 524, 115–123. [Google Scholar] [CrossRef]
- Whitehead, A.; Airey, R.; Buttar, C.; Conway, J.; Hill, G.; Ramkumar, S.; Scarsbrook, G.; Sussmann, R.; Walker, S. CVD diamond for medical dosimetry applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 20–26. [Google Scholar] [CrossRef]
- Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V.; Angelone, M.; Pillon, M. Improved performance in synthetic diamond neutron detectors: Application to boron neutron capture therapy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 612, 580–582. [Google Scholar] [CrossRef]
- Rollet, S.; Angelone, M.; Magrin, G.; Marinelli, M.; Milani, E.; Pillon, M.; Prestopino, G.; Verona, C.; Verona-Rinati, G. A novel microdisimeter based upon artificial single crystal diamond. IEEE Trans. Nucl. Sci. 2012, 59, 2409. [Google Scholar] [CrossRef] [Green Version]
- Verona, C.; Magrin, G.; Solevi, P.; Bandorf, M.; Marinelli, M.; Stock, M.; Rinati, G.V. Toward the use of single crystal diamond based detector for ion-beam therapy microdosimetry. Radiat. Meas. 2018, 110, 25–31. [Google Scholar] [CrossRef]
- ICRP. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 2007, 37, 9–34. [Google Scholar] [CrossRef]
- Angelone, M.; Pillon, M.; Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Rinati, G.V.; Aielli, G.; Cardarelli, R.; Santonico, R.; et al. Thermal and fast neutron dosimetry using artificial single crystal diamond detectors. Radiat. Meas. 2011, 46, 1686–1689. [Google Scholar] [CrossRef] [Green Version]
- Verona-Rinati, G. Neutron detectors. In CVD Diamond for Electronic Devices and Sensors; John Wiley & Sons, Ltd.: Chichester, UK, 2009; Chapter 11; ISBN 978-0-470-06532-7. [Google Scholar]
- Marinelli, M.; Milani, E.; Prestopino, G.; Scoccia, M.; Tucciarone, A.; Rinati, G.V.; Angelone, M.; Pillon, M.; Lattanzi, D. High performance Li6F-diamond thermal neutron detectors. Appl. Phys. Lett. 2006, 89, 143509. [Google Scholar] [CrossRef]
- Angelone, M.; Fonnesu, N.; Colangeli, A.; Moro, F.; Pillon, M.; Villari, R. Calibration and test of a 6LiF-diamond detector for the HCPB mock-up experiment at JET. Fusion Eng. Des. 2019, 146, 1755–1758. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Rinati, G.V.; Verona, C.; Schooneveld, E.; Angelone, M.; Pillon, M. A single-crystal diamond-based thermal neutron beam monitor for instruments at pulsed neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 610, 677–681. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Andreani, C.; Rebai, M.; Giacomelli, L.; Gorini, G.; Cippo, E.P.; Tardocchi, M.; Fazzi, A.; Rinati, G.V.; Verona, C.; et al. Fission diamond detectors for fast-neutron ToF spectroscopy. Eur. Europhys. Lett. 2011, 94, 62001. [Google Scholar] [CrossRef]
- Pillon, M.; Angelone, M.; Batistoni, P.; Villari, R.; Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Rinati, G.V. Development of on-line tritium monitor based upon artificial diamond for fusion applications. IEEE Trans. Nucl. Sci. 2009, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Angelone, M.; Rinati, G.V.; Cardarelli, R.; Mila, G.; et al. Neutron spectrometer for fast nuclear reactors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 799, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Verona-Rinati, G.; Cardarelli, R. Response of a diamond detector sandwich to 14MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 817, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Berretti, M. The diamond time of flight detector of the TOTEM experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 29–32. [Google Scholar] [CrossRef]
- Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P. Ionization signals from diamond detectors in fast-neutron fields. Eur. Phys. J. A 2016, 52, 269. [Google Scholar] [CrossRef]
- Kavrigin, P.; Finocchiaro, P.; Griesmayer, E.; Jericha, E.; Pappalardo, A.; Weiss, C. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 795, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.I.; Angelone, M.; Yoshihashi, S.; Ogawa, K.; Isobe, M.; Nishitani, T.; Sangaroon, S.; Kamio, S.; Fujiwara, Y.; Tsubouchi, T.; et al. Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD. Fusion Eng. Des. 2020, 161, 112063. [Google Scholar] [CrossRef]
- Passeri, M.; Carnevale, D.; Esposito, B.; Marocco, D.; Podda, S.; Pompili, F.; Riva, M. Neutron/Gamma separation in 500 μm thick single crystal diamonds. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 974, 164195. [Google Scholar] [CrossRef]
- Koizumi, S.; Umezawa, H.; Pernot, J.; Suzuki, M. (Eds.) Power Electronics Device Applications of Diamond Semiconductors; Woodhead Publishing: Duxford, UK, 2018; ISBN 9780081021835. [Google Scholar]
- Koike, J.; Parkin, D.M.; Mitchell, T.E. Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 1992, 60, 1450–1452. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Butler, J.E. Theory of diamond chemical vapor deposition. In Handbook of Industrial Diamonds and Diamond Films; Prelas, M., Popovici, G., Bigelow, L., Eds.; Marcel Dekker: New York, NY, USA, 1997; pp. 527–583. ISBN 97803674. [Google Scholar]
- Balmer, R.S.; Brandon, J.R.; Clewes, S.L.; Dhillon, H.K.; Dodson, J.M.; Friel, I.; Inglis, P.N.; Madgwick, T.D.; Markham, M.L.; Mollart, T.; et al. Chemical vapour deposition synthetic diamond: Materials, technology and applications. J. Phys. Condens. Matter 2009, 21, 364221. [Google Scholar] [CrossRef] [Green Version]
- Palyanova, Y.N.; Khokhryakova, A.F.; Kupriyanova, I.N. Crystallomorphological and Crystallochemical Indicators of Diamond Formation Conditions. Crystallogr. Rep. 2021, 66, 142. [Google Scholar] [CrossRef]
- Boyd, F.R.; Finnerty, A.A. Conditions of origin of natural diamonds of peridotite affinity. J. Geophys. Res. Space Phys. 1980, 85, 6911. [Google Scholar] [CrossRef]
- Derjaguin, B.; Fedoseev, D.; Lukyanovich, V.; Spitzin, B.; Ryabov, V.; Lavrentyev, A. Filamentary diamond crystals. J. Cryst. Growth 1968, 2, 380–384. [Google Scholar] [CrossRef]
- Derjaguin, B.; Fedoseev, D. Physico-chemical synthesis of diamond in metastable range. Carbon 1973, 11, 299–308. [Google Scholar] [CrossRef]
- Jiang, X.; Klages, C.-P. Heteroepitaxial diamond growth on (100) silicon. Diam. Relat. Mater. 1993, 2, 1112–1113. [Google Scholar] [CrossRef]
- Grácio, J.; Fan, Q.H.; Madaleno, J.C. Diamond growth by chemical vapour deposition. J. Phys. D Appl. Phys. 2010, 43. [Google Scholar] [CrossRef]
- Mankelevich Yu, A.; May, P.W. New insight into the mechanism of CVD diamond growth: Single crystal diamond in MW PECVD reactors. Diam. Relat. Mater. 2008, 17, 1021–1028. [Google Scholar]
- Marinelli, M.; Milani, E.; Paoletti, A.; Tucciarone, A.; Rinati, G.V.; Angelone, M.; Pillon, M. High-quality diamond grown by chemical-vapor deposition: Improved collection efficiency in α-particle detection. Appl. Phys. Lett. 1999, 75, 3216–3218. [Google Scholar] [CrossRef]
- Clark, C.D.; Dean, P.J.; Harris, P.V. Intrinsic edge absorption in diamond. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1964, 277, 312–329. [Google Scholar] [CrossRef]
- Jansen, H.; Dobos, D.; Eremin, V.; Pernegger, H.; Wermes, N. Temperature Dependence of Charge Carrier Properties in Single Crystal CVD Diamond Detectors. Phys. Procedia 2012, 37, 2005–2014. [Google Scholar] [CrossRef] [Green Version]
- Allers, L.; Howard, A.; Hassard, J.; Mainwood, A. Neutron damage of CVD diamond. Diam. Relat. Mater. 1997, 6, 353–355. [Google Scholar] [CrossRef]
- Oh, A.; Moll, M.; Wagner, A.; Zeuner, W. Neutron irradiation studies with detector grade CVD diamond. Diam. Relat. Mater. 2000, 9, 1897–1903. [Google Scholar] [CrossRef]
- Alekseyev, A.; Amosov, V.; Kaschuck, Y.; Krasilnikov, A.; Portnov, D.; Tugarinov, S. Study of natural diamond detector spectrometric properties under neutron irradiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 476, 516–521. [Google Scholar] [CrossRef]
- Angelone, M.; Pillon, M.; Balducci, A.; Marinelli, M.; Milani, E.; Morgada, M.E.; Pucella, G.; Tucciarone, A.; Rinati, G.V.; Ochiai, K.; et al. Radiation hardness of a polycrystalline chemical-vapor-deposited diamond detector irradiated with 14 MeV neutrons. Rev. Sci. Instrum. 2006, 77, 023505. [Google Scholar] [CrossRef]
- Tanaka, T.; Kaneko, J.H.; Kasugai, Y.; Katagiri, M.; Takeuchi, H.; Nishitani, T.; Iida, T. Radiation tolerance of type IIa synthetic diamond detector for 14 MeV neutrons. Diam. Relat. Mater. 2005, 14, 2031–2034. [Google Scholar] [CrossRef]
- Vittone, E.; Manfredotti, C.; Fizzotti, F.; Giudice, A.; Polesello, P.; Ralchenko, V. Thermoluminescence in CVD diamond films: Application to radiation dosimetry. Diam. Relat. Mater. 1999, 8, 1234–1239. [Google Scholar] [CrossRef]
- Buttar, C.; Airey, R.; Conway, J.; Hill, G.; Ramkumar, S.; Scarsbrook, G.; Sussmann, R.; Walker, S.; Whitehead, A. A study of radiotherapy dosimeters based on diamond grown by chemical vapour deposition. Diam. Relat. Mater. 2000, 9, 965–969. [Google Scholar] [CrossRef]
- Guerrero, M.; Tromson, D.; Rebisz, M.; Mer, C.; Bazin, B.; Bergonzo, P. Requirements for synthetic diamond devices for radiotherapy dosimetry applications. Diam. Relat. Mater. 2004, 13, 2046–2051. [Google Scholar] [CrossRef]
- Manfredotti, C. CVD diamond detectors for nuclear and dosimetric applications. Diam. Relat. Mater. 2005, 14, 531–540. [Google Scholar] [CrossRef]
- Balducci, A.; Garino, Y.; Giudice, A.L.; Manfredotti, C.; Marinelli, M.; Pucella, G.; Rinati, G.V. Radiological X-ray dosimetry with single crystal CVD diamond detectors. Diam. Relat. Mater. 2006, 15, 797–801. [Google Scholar] [CrossRef]
- Ravichandran, R.; Binukumar, J.P.; Al Amri, I.; Cheriyathmanjiyil, A.D. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J. Appl. Clin. Med. Phys. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Verona, C.; Cirrone, G.A.P.; Magrin, G.; Marinelli, M.; Palomba, S.; Petringa, G.; Rinati, G.V. Microdosimetric measurements of a monoenergetic and modulated Bragg Peaks of 62 MeV therapeutic proton beam with a synthetic single crystal diamond microdosimeter. Med. Phys. 2020, 47, 5791–5801. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.; Tromson, D.; Descamps, C.; Bergonzo, P. Recent improvements on the use of CVD diamond ionisation chambers for radiotherapy applications. Diam. Relat. Mater. 2006, 15, 811–814. [Google Scholar] [CrossRef]
- Rębisz, M.; Martemiyanov, A.; Berdermann, E.; Pomorski, M.; Marczewska, B.; Voss, B.; Rȩbisz, M. Synthetic diamonds for heavy-ion therapy dosimetry. Diam. Relat. Mater. 2006, 15, 822–826. [Google Scholar] [CrossRef]
- Krása, J.; Juha, L.; Vorlíček, V.; Cejnarová, A. Application of CVD diamonds as dosimeters of soft X-ray emission from plasma sources. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 524, 332–339. [Google Scholar] [CrossRef]
- Werner, M. Diamond metallization for device applications. Semicond. Sci. Technol. 2003, 18, S41–S46. [Google Scholar] [CrossRef]
- Rivière, J.C. Solid State Surface Science; Marcel Dekker: New York, NY, USA, 1969; Volume 1, ISBN 0824760174 9780824760175. [Google Scholar]
- Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, N.; Ikeda, K.; Umezawa, H.; Shikata, S. Development of diamond Schoktty barrier diode. SEI Tech. Rev. 2009, 68, 54. [Google Scholar]
- Koné, S.; Schneider, H.; Isoird, K.; Thion, F.; Achard, J.; Issaoui, R.; Msolli, S.; Alexis, J. An assessment of contact metallization for high power and high temperature diamond Schottky devices. Diam. Relat. Mater. 2012, 27–28, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Teraji, T.; Koide, Y.; Ito, T. Schottky barrier height and thermal stability of p-diamond (100) Schottky interfaces. Thin Solid Films 2014, 557, 241–248. [Google Scholar] [CrossRef]
- Ciancaglioni, I.; Di Venanzio, C.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Rinati, G.V.; Angelone, M.; Pillon, M.; Tartoni, N. Influence of the metallic contact in extreme-ultraviolet and soft x-ray diamond based Schottky photodiodes. J. Appl. Phys. 2011, 110, 054513. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Kawamoto, K.; Soumiya, T.; Asano, H. High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diam. Relat. Mater. 2013, 38, 41–44. [Google Scholar] [CrossRef]
- Evans, D.A.; Roberts, O.R.; Williams, G.T.; Vearey-Roberts, A.R.; Bain, F.; Evans, S.; Langstaff, D.P.; Twitchen, D.J. Diamond-metal contacts: Interface barriers and real-time characterization. J. Phys. Condens. Matter 2009, 21, 364223. [Google Scholar] [CrossRef]
- Galbiati, A.; Lynn, S.; Oliver, K.; Schirru, F.; Nowak, T.; Marczewska, B.; Duenas, J.; Berjillos, R.; Martel, I.; Lavergne, L. Performance of Monocrystalline Diamond Radiation Detectors Fabricated Using TiW, Cr/Au and a Novel Ohmic DLC/Pt/Au Electrical Contact. IEEE Trans. Nucl. Sci. 2009, 56, 1863–1874. [Google Scholar] [CrossRef]
- Moazed, K.; Nguyen, R.; Zeidler, J. Ohmic contacts to semiconducting diamond. IEEE Electron Device Lett. 1988, 9, 350–351. [Google Scholar] [CrossRef] [Green Version]
- Prins, J.F. Preparation of ohmic contacts to semiconducting diamond. J. Phys. D Appl. Phys. 1989, 22, 1562–1564. [Google Scholar] [CrossRef]
- Latto, M.N.; Riley, D.; May, P.W. Impedance studies of boron-doped CVD diamond electrodes. Diam. Relat. Mater. 2000, 9, 1181–1183. [Google Scholar] [CrossRef]
- Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V.; Angelone, M.; Pillon, M.; Dolbnya, I.; et al. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties. J. Appl. Phys. 2010, 107, 014511. [Google Scholar] [CrossRef]
- Angelone, M.; Pilotti, R.; Sarto, F.; Pillon, M.; Lecci, S.; Loreti, S.; Pagano, G.; Cesaroni, S.; Verona, C.; Marinelli, M.; et al. Systematic study of the response of single crystal diamond neutron detectors at high temperature. J. Instrum. 2020, 15, P03031. [Google Scholar] [CrossRef]
- Kassel, F.; Guthoff, M.; Dabrowski, A.; de Boer, W. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects. Phys. Status Sol. 2016, 213, 2641–2649. [Google Scholar] [CrossRef] [Green Version]
- Angelone, M.; Fonnesu, N.; Pillon, M.; Prestopino, G.; Sarto, F.; Milani, E.; Marinelli, M.; Verona, C.; Rinati, G.V. Spectrometric Performances of Monocrystalline Artificial Diamond Detectors Operated at High Temperature. IEEE Trans. Nucl. Sci. 2012, 59, 2416–2423. [Google Scholar] [CrossRef]
- Klein, C.A. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors. J. Appl. Phys. 1968, 39, 2029–2038. [Google Scholar] [CrossRef]
- Shockley, W. Problems related top-n junctions in silicon. Czechoslov. J. Phys. 1961, 11, 81–121. [Google Scholar] [CrossRef]
- Pillon, M.; Angelone, M.; Krása, A.; Plompen, A.; Schillebeeckx, P.; Sergi, M. Experimental response functions of a single-crystal diamond detector for 5–20.5MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 640, 185–191. [Google Scholar] [CrossRef]
- Li, Z.; Kraner, H. Modeling and simulation of charge collection properties for neutron irradiated silicon detectors. Nucl. Phys. B-Proc. Suppl. 1993, 32, 398–409. [Google Scholar] [CrossRef]
- Sze, S.M.; Mattis, D.C. Physics of Semiconductor Devices. Phys. Today 1970, 23, 75. [Google Scholar] [CrossRef] [Green Version]
- Pernegger, H.; Roe, S.; Weilhammer, P.; Eremin, V.; Frais-Kölbl, H.; Griesmayer, E.; Kagan, H.; Schnetzer, S.; Stone, R.; Trischuk, W.; et al. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique. J. Appl. Phys. 2005, 97, 073704. [Google Scholar] [CrossRef] [Green Version]
- Eremin, V.; Strokan, N.; Verbitskaya, E.; Li, Z. Development of transient current and charge techniques for the measurement of effective net concentration of ionized charges (Neff) in the space charge region of p-n junction detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 372, 388–398. [Google Scholar] [CrossRef]
- Eremin, V.; Verbitskaya, E.; Li, Z.; Sidorov, A.; Fretwurst, E.; Lindström, G. Scanning transient current study of the I-V stabilization phenomena in silicon detectors irradiated by fast neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 388, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef]
- Isberg, J.; Lindblom, A.; Tajani, A.; Twitchen, D. Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. Phys. Status Sol. 2005, 202, 2194–2198. [Google Scholar] [CrossRef]
- Nava, F.; Canali, C.; Jacoboni, C.; Reggiani, L.; Kozlov, S. Electron effective masses and lattice scattering in natural diamond. Solid State Commun. 1980, 33, 475–477. [Google Scholar] [CrossRef]
- Gabrysch, M.; Majdi, S.; Twitchen, D.J.; Isberg, J. Electron and hole drift velocity in chemical vapor deposition diamond. J. Appl. Phys. 2011, 109, 063719. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.N.; Bemis, A.V.; Carter, R.L.; Renbeck, R.B. Temperature, electric field, and doping dependent mobilities of electrons and holes in semiconductors. Solid-State Electron. 1993, 36, 1677–1683. [Google Scholar] [CrossRef]
- Kittel, C.; Hellwarth, R.W. Introduction to Solid State Physics. Phys. Today 1957, 10, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Bethee, H.; Ashkin, J. Experimental Nuclear Physics; John Wiley & Sons, Inc.: New York, NY, USA, 1953; p. 253. [Google Scholar]
- Souw, E.-K.; Meilunas, R. Response of CVD diamond detectors to alpha radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 400, 69–86. [Google Scholar] [CrossRef]
- Hecht, K. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Eur. Phys. J. A 1932, 77, 235–245. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons, Inc.: New York, NY, USA, 2010; ISBN 13-978-0470131480. [Google Scholar]
- Ramo, S. Currents Induced by Electron Motion. Proc. IRE 1939, 27, 584–585. [Google Scholar] [CrossRef]
- Shockley, W. Currents to Conductors Induced by a Moving Point Charge. J. Appl. Phys. 1938, 9, 635–636. [Google Scholar] [CrossRef]
- He, Z. Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 463, 250–267. [Google Scholar] [CrossRef]
- Cavalleri, G.; Gatti, E.; Fabri, G.; Svelto, V. Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors. Nucl. Instrum. Methods 1971, 92, 137–140. [Google Scholar] [CrossRef]
- Kotov, I. Currents induced by charges moving in semiconductor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 539, 267–268. [Google Scholar] [CrossRef] [Green Version]
- Hamel, L.-A.; Julien, M. Generalized demonstration of Ramo’s theorem with space charge and polarization effects. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 597, 207–211. [Google Scholar] [CrossRef]
- Angelone, M.; Cesaroni, S.; Loreti, S.; Pagano, G.; Pillon, M. High temperature response of a single crystal CVD diamond detector operated in current mode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 943. [Google Scholar] [CrossRef]
- Kraus, B.; Steinegger, P.; Aksenov, N.V.; Dressler, R.; Eichler, R.; Griesmayer, E.; Herrmann, D.; Türler, A.; Weiss, C. Charge carrier properties of single-crystal CVD diamond up to 473 K. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 989, 164947. [Google Scholar] [CrossRef]
- Lutz, G. Semiconductor Radiation Detector Device Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; ISBN 13-978-3540716785. [Google Scholar]
- Bergonzo, P.; Tromson, D.; Descamps, C.; Hamrita, H.; Mer, C.; Tranchant, N.; Nesladek, M. Improving diamond detectors: A device case. Diam. Relat. Mater. 2007, 16, 1038–1043. [Google Scholar] [CrossRef]
- Bruzzi, M.; Menichelli, D.; Sciortino, S.; Lombardi, L. Deep levels and trapping mechanisms in chemical vapor deposited diamond. J. Appl. Phys. 2002, 91, 5765–5774. [Google Scholar] [CrossRef] [Green Version]
- Gonon, P.; Prawer, S.; Jamieson, D. Thermally stimulated currents in polycrystalline diamond films: Application to radiation dosimetry. Appl. Phys. Lett. 1997, 70, 2996–2998. [Google Scholar] [CrossRef]
- Glesener, J.W. Photoinduced current transient spectroscopy of boron doped diamond. Appl. Phys. Lett. 1993, 63, 767–769. [Google Scholar] [CrossRef]
- Wang, S.; Sellin, P.; Lohstroh, A. Temperature-dependent hole detrapping for unprimed polycrystalline chemical vapor deposited diamond. Appl. Phys. Lett. 2006, 88, 023501. [Google Scholar] [CrossRef] [Green Version]
- Element 6. Diamond Handbook. Available online: https://www.e6.com/en/products/optics (accessed on 20 October 2021).
- Pan, L.S.; Kania, D.R.; Pianetta, P.; Landen, O.L. Carrier density dependent photoconductivity in diamond. Appl. Phys. Lett. 1990, 57, 623–625. [Google Scholar] [CrossRef]
- Hodgson, M.; Lohstroh, A.; Sellin, P. Alpha radiation induced space charge stability effects in semi-insulating silicon carbide semiconductors compared to diamond. Diam. Relat. Mater. 2017, 78, 49–57. [Google Scholar] [CrossRef]
- Majerle, M.; Angelone, M.; Krása, A.; Novák, J.; Pillon, M.; Pilotti, R.; Plompen, A.; Šimečková, E.; Štefánik, M. The response of single crystal diamond detectors to 17–34 MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 951, 163014. [Google Scholar] [CrossRef]
- Angelone, M. Diamond Detectors for Neutrons; International Atomic Energy: Vienna, Austria, 2020; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/52/019/52019798.pdf?r=1 (accessed on 20 October 2021).
- Angelone, M.; Lattanzi, D.; Pillon, M.; Marinelli, M.; Milani, E.; Tucciarone, A.; Rinati, G.V.; Popovichev, S.; Montereali, R.; Vincenti, M.; et al. Development of single crystal diamond neutron detectors and test at JET tokamak. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 595, 616–622. [Google Scholar] [CrossRef]
- Lattanzi, D.; Angelone, M.; Pillon, M.; Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V.; et al. Single crystal CVD diamonds as neutron detectors at JET. Fusion Eng. Des. 2009, 84, 1156–1159. [Google Scholar] [CrossRef]
- Kassel, F.; Guthoff, M.; Dabrowski, A.; De Boer, W. Description of Radiation Damage in Diamond Sensors Using an Effective Defect Model. Phys. Status Sol. 2017, 214, 1700162. [Google Scholar] [CrossRef] [Green Version]
- Shockley, W.; Read, J.W.T. Statistics of the Recombination of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Dhariwal, S.; Kothari, L.; Jain, S. On the recombination of electrons and holes at traps with finite relaxation time. Solid-State Electron. 1981, 24, 749–752. [Google Scholar] [CrossRef]
- Goudon, T.; Miljanović, V.; Schmeiser, C. On the Shockley–Read–Hall Model: Generation-Recombination in Semiconductors. SIAM J. Appl. Math. 2007, 67, 1183–1201. [Google Scholar] [CrossRef]
- Mainwood, A.; Allers, L.; Collins, A.; Hassard, J.F.; Howard, A.S.; Mahon, A.R.; Parsons, H.L.; Sumner, T.; Collins, J.L.; A Scarsbrook, G.; et al. Neutron damage of chemical vapour deposition diamond. J. Phys. D Appl. Phys. 1995, 28, 1279–1283. [Google Scholar] [CrossRef]
- Lohstroh, A.; Sellin, P.; Gkoumas, S.; Al-Barakaty, H.; Veeramani, P.; Özsan, M.; Prekas, G.; Veale, M.; Parkin, J.; Davies, A. The effect of fast neutron irradiation on the performance of synthetic single crystal diamond particle detectors. Diam. Relat. Mater. 2010, 19, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Pillon, M.; Angelone, M.; Aielli, G.; Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V. Radiation tolerance of a high quality synthetic single crystal chemical vapor deposition diamond detector irradiated by 14.8 MeV neutrons. J. Appl. Phys. 2008, 104, 054513. [Google Scholar] [CrossRef]
- Hassard, J. The neutron radiation hardness of diamond detectors for future particle physics experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1995, 368, 217–219. [Google Scholar] [CrossRef]
- Almaviva, S.; Angelone, M.; Marinelli, M.; Milani, E.; Pillon, M.; Prestopino, G.; Tucciarone, A.; Verona, C.; Rinati, G.V. Characterization of damage induced by heavy neutron irradiation on multilayered L6iF-single crystal chemical vapor deposition diamond detectors. J. Appl. Phys. 2009, 106, 073501. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Shimaoka, T.; Kaneko, J.H.; Murakami, H.; Isobe, M.; Osakabe, M.; Tsubota, M.; Ochiai, K.; Chayahara, A.; Umezawa, H.; et al. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 784, 147–150. [Google Scholar] [CrossRef]
- Zamboni, I.; Pastuović, Ž.; Jakšić, M. Radiation hardness of single crystal CVD diamond detector tested with MeV energy ions. Diam. Relat. Mater. 2013, 31, 65–71. [Google Scholar] [CrossRef]
- Cazzaniga, C.; Rebai, M.; Lopez, J.G.; Jiménez-Ramos, M.; Girolami, M.; Trucchi, D.M.; Bellucci, A.; Frost, C.; Garcia-Munoz, M.; Nocente, M.; et al. Charge collection uniformity and irradiation effects of synthetic diamond detectors studied with a proton micro-beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 405, 1–10. [Google Scholar] [CrossRef]
- ASTM F1190-18. Standard Guide for Neutron Irradiation of Unbiased Electronic Components; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar] [CrossRef]
- Nordlund, K. Primary Radiation Damage in Materials; Report NEA/NSC/DOC; Nuclear Energy Agency of the OECD (NEA): Paris, France, 2015; p. 9. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:46066650 (accessed on 20 October 2021).
- Messenger, S.R.; Burke, E.A.; Walters, R.J.; Warner, J.H.; Summers, G.P. Using SRIM to calculate the relative damage coefficients for solar cells. Prog. Photovolt. Res. Appl. 2005, 13, 115–123. [Google Scholar] [CrossRef]
- Grilj, V.; Skukan, N.; Jakšić, M.; Pomorski, M.; Kada, W.; Kamiya, T.; Ohshima, T. The evaluation of radiation damage parameter for CVD diamond. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 372, 161–164. [Google Scholar] [CrossRef]
- Borchi, E.; Bruzzi, M. Radiation damage in silicon detectors. La Riv. Nuovo Cim. 1994, 17, 1–63. [Google Scholar] [CrossRef]
- Pompili, F.; Esposito, B.; Marocco, D.; Podda, S.; Riva, M.; Baccaro, S.; Cemmi, A.; Di Sarcina, I.; Quintieri, L.; Bocian, D.; et al. Radiation and thermal stress test on diamond detectors for the Radial Neutron Camera of ITER. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 936, 62–64. [Google Scholar] [CrossRef]
- Passeri, M.; Pompili, F.; Esposito, B.; Pillon, M.; Angelone, M.; Marocco, D.; Pagano, G.; Podda, S.; Riva, M. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1010, 165574. [Google Scholar] [CrossRef]
- Wallny, R. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications; Technical Report 1053059; The Ohio State University Research Foundation: Columbus, OH, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- The RD42 Collaboration; Trischuk, W. Recent advances in diamond detectors. arXiv 2008, arXiv:0810.3429. [Google Scholar]
- Cristinziani, M. Diamond prototypes for the ATLAS SLHC pixel detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 623, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Tsung, J.W.; Havranek, M.; Hügging, F.; Kagan, H.; Krüger, H.; Wermes, N. Signal and noise of diamond pixel detectors at high radiation fluences. J. Instrum. 2012, 7, P09009. [Google Scholar] [CrossRef]
- Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Bes, A.; et al. A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions. Sensors 2020, 20, 6648. [Google Scholar] [CrossRef]
- Verona, C.; Magrin, G.; Solevi, P.; Grilj, V.; Jakšić, M.; Mayer, R.; Marinelli, M.; Verona-Rinati, G. Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry. J. Appl. Phys. 2015, 118, 184503. [Google Scholar] [CrossRef] [Green Version]
- Baccaro, S.; Cemmi, A.; Di Sarcina, I.; Esposito, B.; Ferrara, G.; Grossi, A.; Montecchi, M.; Podda, S.; Pompili, F.; Quintieri, L.; et al. Radiation Damage Tests on Diamond and Scintillation Detector Components for the ITER Radial Neutron Camera. IEEE Trans. Nucl. Sci. 2018, 65, 2046–2053. [Google Scholar] [CrossRef]
- Ward, A.; Broido, D.A.; Stewart, D.A.; Deinzer, G. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 2009, 80, 125203. [Google Scholar] [CrossRef] [Green Version]
- McGaughey, A.J.H.; Jain, A.; Kim, H.-Y. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 2019, 125, 011101. [Google Scholar] [CrossRef]
- Tanimura, Y.; Kaneko, J.; Katagiri, M.; Ikeda, Y.; Nishitani, T.; Takeuchi, H.; Iida, T. High-temperature operation of a radiation detector made of a type IIa diamond single crystal synthesized by a HP/HT method. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 443, 325–330. [Google Scholar] [CrossRef]
- Tromson, D.; Brambilla, A.; Bergonzo, P.; Mas, A.; Hordequin, C.; Mer, C.; Foulon, F. Influence of temperature on the response of diamond radiation detectors. J. Appl. Phys. 2001, 90, 1608–1611. [Google Scholar] [CrossRef]
- Metcalfe, A.; Fern, G.R.; Hobson, P.R.; Ireland, T.; Salimian, A.; Silver, J.; Smith, D.R.; Lefeuvre, G.; Saenger, R. Development of high temperature, radiation hard detectors based on diamond. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, A.; Topkar, A.; Das, D. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 858, 12–17. [Google Scholar] [CrossRef]
- Philip, O.; Gicquel, F.; Ernst, V.; Zhou, Z. Development and Test of a Diamond-Based Fast Neutron Detector for 200 °C Operation. IEEE Trans. Nucl. Sci. 2017, 64, 2683–2689. [Google Scholar] [CrossRef]
- Fern, G.R.; Hobson, P.R.; Metcalfe, A.; Smith, D. Performance of four CVD diamond radiation sensors at high temperature. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 958. [Google Scholar] [CrossRef]
- Pilotti, R.; Angelone, M.; Pagano, G.; Loreti, S.; Pillon, M.; Sarto, F.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; et al. Development and high temperature testing by 14 MeV neutron irradiation of single crystal diamond detectors. J. Instrum. 2016, 11, C06008. [Google Scholar] [CrossRef]
- Crnjac, A.; Skukan, N.; Provatas, G.; Rodriguez-Ramos, M.; Pomorski, M.; Jakšić, M. Electronic Properties of a Synthetic Single-Crystal Diamond Exposed to High Temperature and High Radiation. Materials 2020, 13, 2473. [Google Scholar] [CrossRef] [PubMed]
- Muret, P.; Kumar, A.; Volpe, P.-N.; Wade, M.; Pernot, J.; Magaud, L.; Mer, C.; Bergonzo, P. Electrically active defects in boron doped diamond homoepitaxial layers studied from deep level transient spectroscopies and other techniques. Phys. Status Sol. 2009, 206, 2016–2021. [Google Scholar] [CrossRef] [Green Version]
- Isberg, J.; Tajani, A.; Twitchen, D.J. Photoionization measurement of deep defects in single-crystalline CVD diamond using the transient-current technique. Phys. Rev. B 2006, 73, 245207. [Google Scholar] [CrossRef]
- Nad, S.; Gu, Y.; Asmussen, J. Growth strategies for large and high quality single crystal diamond substrates. Diam. Relat. Mater. 2015, 60, 26–34. [Google Scholar] [CrossRef]
- Yamada, H.; Chayahara, A.; Mokuno, Y.; Kato, Y.; Shikata, S. A 2-in. mosaic wafer made of a single-crystal diamond. Appl. Phys. Lett. 2014, 104, 102110. [Google Scholar] [CrossRef]
- Schreck, M.; Gsell, S.; Brescia, R.; Fischer, M. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 2017, 7, srep44462. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, K. Diamond Films: Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth; Elsevier Ltd.: Oxford, UK, 2005. [Google Scholar]
- Jiang, X. Chapter 1 Textured and heteroepitaxial CVD diamond films. Semicond. Semimet. 2003, 76, 1–47. [Google Scholar] [CrossRef]
- Cazzaniga, C.; Nocente, M.; Rebai, M.; Tardocchi, M.; Calvani, P.; Croci, G.; Giacomelli, L.; Girolami, M.; Griesmayer, E.; Grosso, G.; et al. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas. Rev. Sci. Instrum. 2014, 85, 11E101. [Google Scholar] [CrossRef]
- Claps, G.; Murtas, F.; Foggetta, L.; Di Giulio, C.; Alozy, J.; Cavoto, G. Diamondpix: A CVD Diamond Detector with Timepix3 Chip Interface. IEEE Trans. Nucl. Sci. 2018, 65, 2743–2753. [Google Scholar] [CrossRef]
- Bossini, E.; Minafra, N. Diamond Detectors for Timing Measurements in High Energy Physics. Front. Phys. 2020, 8. [Google Scholar] [CrossRef]
- Anderlini, L.; Bellini, M.; Bizzeti, A.; Cardini, A.; Ciaranfi, R.; Corsi, C.; Garau, M.; Lai, A.; Lagomarsino, S.; Lampis, A.; et al. Fabrication and Characterisation of 3D Diamond Pixel Detectors with Timing Capabilities. Front. Phys. 2020, 8. [Google Scholar] [CrossRef]
- Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R.M.; Vincenti, M.A.; Schooneveld, E.M.; et al. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation. Eur. Europhys. Lett. 2016, 116, 42001. [Google Scholar] [CrossRef]
- Nebel, C.E.; Rezek, B.; Shin, D.; Uetsuka, H.; Yang, N. Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 2007, 40, 6443–6466. [Google Scholar] [CrossRef]
- Cesaroni, S.; Angelone, M.; Apruzzese, G.; Bombarda, F.; Gabellieri, L.; Marinelli, M.; Milani, E.; Palomba, S.; Pucella, G.; Romano, A.; et al. CVD diamond photodetectors for FTU plasma diagnostics. Fusion Eng. Des. 2021, 166, 112323. [Google Scholar] [CrossRef]
- Girolami, M.; Allegrini, P.; Conte, G.; Trucchi, D.M.; Ralchenko, V.G.; Salvatori, S. Diamond Detectors for UV and X-ray Source Imaging. IEEE Electron Device Lett. 2011, 33, 224–226. [Google Scholar] [CrossRef]
- Allegrini, P.R.; Girolami, M.; Calvani, P.; Conte, G.; Salvatori, S.; Spiriti, E.; Ralchenko, V.G. Diamond detectors for x-ray spectroscopy. Proc. SPIE 2008, 70771P. [Google Scholar] [CrossRef]
- Talamonti, C.; Kanxheri, K.; Pallotta, S.; Servoli, L. Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry. Front. Phys. 2021, 9. [Google Scholar] [CrossRef]
- Wort, C.J.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 2016, 65, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Dhomkar, S.; Henshaw, J.; Jayakumar, H.; Meriles, C.A. Long-term data storage in diamond. Sci. Adv. 2016, 2, e1600911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasu, M.; Ueda, K.; Yamauchi, Y.; Tallaire, A.; Makimoto, T. Diamond-based RF power transistors: Fundamentals and applications. Diam. Relat. Mater. 2007, 16, 1010–1015. [Google Scholar] [CrossRef]
- Kasu, M.; Ueda, K.; Ye, H.; Yamauchi, Y.; Sasaki, S.; Makimoto, T. High RF output power for H-terminated diamond FETs. Diam. Relat. Mater. 2006, 15, 783–786. [Google Scholar] [CrossRef]
- Verona, C.; Ciccognani, W.; Colangeli, S.; Limiti, E.; Marinelli, M.; Verona-Rinati, G.; Santoni, E.; Angelone, M.; Pillon, M.; Pompili, F.; et al. 14.8-MeV Neutron Irradiation on H-Terminated Diamond-Based MESFETs. IEEE Electron Device Lett. 2016, 37, 1597–1600. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Atomic Number | 6 |
Eg at 300 K (eV) | 5.470 |
Density (g·cm−3) | 3.515 |
εp (eV) | 13 |
Fusion temperature (°C) | 4100 |
Electron mobility (cm2V−1s−1) at 300 K | 1800–2200 |
Hole mobility (cm2V−1s−1) at 300 K | 1200–1600 |
Breakdown voltage (Vcm−1) | >107 |
Thermal conductivity σT (Wcm−1K−1) | 20 |
Saturation velocity vsat (cm s−1) | 2.7 × 107 |
Resistivity ρ (ohm cm) | >1013 |
Intrinsic carrier density at 300 K (cm−3) | <103 |
Dielectric constant | 5.7 |
Energy to displace an atom (eV) 1 | 37.5–47.6 |
Element | Work Function 1 (eV) |
---|---|
Al | 4.1 |
Ti | 4.3 |
Cr | 4.5 |
Au | 5.1 |
Pt | 5.7 |
Cu | 4.65 |
Ag | 4.29 |
Ni | 5.25 |
W | 4.55 |
Diamond | 4.8–5.8 |
Element | Type | Energy (eV) | σc (cm2) | τD | Reference |
---|---|---|---|---|---|
B | Impurity | 0.38 | 3.0 × 10−16 | ≈ms | [158] |
-- | Defect | 0.31 | ≈3.0 × 10−16 | 0.5 ms | [159] |
-- | Defect | 0.39 | 3.2 × 10−19 | 13 ms | [157] |
-- | Defect | 1.14 | 9.5 × 10−14 | ≈76 days | [156] |
- | Defect | 1.23 | 4 × 10−13 | ≈13 h | [156] |
N | Impurity | 1.86 | ----- | ≈2 × 109 y | [157] |
Qvalue (MeV) | 12C(n,α0)9Be −5.701 | 12C(n,3α) −7.275 | 12C(n,n)12C 0 | 12C(n,p)12B −12.587 | 12C(n,d)11B −13.732 | 13C(n,α)10Be −3.835 |
---|---|---|---|---|---|---|
EThr | ||||||
4.79 | 1.360 | 0.955 | ||||
5.72 | 0.019 | 1.625 | 1.885 | |||
5.94 | 0.239 | 1.687 | 2.105 | |||
6.3 | 0.599 | 1.789 | 2.465 | |||
7.33 | 1.629 | 0.055 | 2.082 | 3.495 | ||
7.87 | 2.169 | 0.595 | 2.235 | 4.035 | ||
8.3 | 2.599 | 1.025 | 2.357 | 4.465 | ||
12.82 | 7.119 | 5.545 | 3.641 | 0.233 | 8.985 | |
13.79 | 8.089 | 6.515 | 3.917 | 1.203 | 0.058 | 9.955 |
15.52 | 9.819 | 8.245 | 4.408 | 2.933 | 1.788 | 11.685 |
15.93 | 10.229 | 8.655 | 4.524 | 3.343 | 2.198 | 12.095 |
16.30 | 10.599 | 9.025 | 4.630 | 3.713 | 2.568 | 12.465 |
17.99 | 12.289 | 10.715 | 5.110 | 5.403 | 4.258 | 14.155 |
18.48 | 12.779 | 11.205 | 5.249 | 5.893 | 4.748 | 14.645 |
18.96 | 13.259 | 11.685 | 5.385 | 6.373 | 5.228 | 15.125 |
20.54 | 14.839 | 13.265 | 5.834 | 7.953 | 6.808 | 16.705 |
Reaction | % |
---|---|
12C(n,α) | 4 |
12C(n,n′) | 5.5 |
12C(n,n) | 70 |
12C(n,γ) | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelone, M.; Verona, C. Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments. J. Nucl. Eng. 2021, 2, 422-470. https://doi.org/10.3390/jne2040032
Angelone M, Verona C. Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments. Journal of Nuclear Engineering. 2021; 2(4):422-470. https://doi.org/10.3390/jne2040032
Chicago/Turabian StyleAngelone, Maurizio, and Claudio Verona. 2021. "Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments" Journal of Nuclear Engineering 2, no. 4: 422-470. https://doi.org/10.3390/jne2040032
APA StyleAngelone, M., & Verona, C. (2021). Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments. Journal of Nuclear Engineering, 2(4), 422-470. https://doi.org/10.3390/jne2040032