Journal Description
Journal of Nuclear Engineering
Journal of Nuclear Engineering
is an international, peer-reviewed, open access journal on nuclear and radiation sciences and applications, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 38.3 days after submission; acceptance to publication is undertaken in 8.4 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Core Physics Characteristics of Extended Enrichment and High Burnup Boiling Water Reactor Fuel
J. Nucl. Eng. 2025, 6(1), 4; https://doi.org/10.3390/jne6010004 - 31 Jan 2025
Abstract
►
Show Figures
This paper presents the highlights of boiling water reactor (BWR) core physics studies performed at Oak Ridge National Laboratory as part of a series of studies conducted to compare low-enriched uranium (LEU) with LEU+ fuel. The studies analyzed isotopic fuel content, lattice parameters
[...] Read more.
This paper presents the highlights of boiling water reactor (BWR) core physics studies performed at Oak Ridge National Laboratory as part of a series of studies conducted to compare low-enriched uranium (LEU) with LEU+ fuel. The studies analyzed isotopic fuel content, lattice parameters (Phase 1), and core physics (Phase 2) to identify challenges in operation, storage, and transportation for BWRs and pressurized water reactors (PWRs). Because of a lack of publicly available lattice and core designs for modern BWR fuel assemblies and reactor cores, several optimized lattice designs were generated, and different core loading strategies were investigated. Twelve optimized lattice designs with 235U enrichments ranging from 1.6% to 9% and gadolinia loadings ranging from 3 to 8 wt% were used to model axial enrichment and geometry variations in fuel assemblies for core designs. Each core shares a common set of approximations in design and analysis to allow for consistent comparisons between LEU and LEU+ fuel. The objective is to highlight anticipated changes in core behavior with respect to the reference LEU core. The results of this study show that the differences in LEU and LEU+ core reactor physics characteristics are less significant than the differences in lattice physics characteristics reported in the Phase 1 studies.
Full article
Open AccessArticle
A Concept of a Para-Hydrogen-Based Cold Neutron Source for Simultaneous High Flux and High Brightness
by
Alexander Ioffe, Petr Konik and Konstantin Batkov
J. Nucl. Eng. 2025, 6(1), 3; https://doi.org/10.3390/jne6010003 - 17 Jan 2025
Abstract
►▼
Show Figures
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because
[...] Read more.
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because the brightness gain originates from a near-surface effect resulting from the prevailing single-collision process during thermal-to-cold neutron conversion, high-aspect-ratio rectangular cold moderators offer a significant increase, up to a factor of 10, in cold neutron brightness compared to a voluminous moderator. The obtained results are in excellent agreement with MCNP calculations. The chessboard or staircase assemblies of such moderators facilitate the generation of wide neutron beams with simultaneously higher brightness and intensity compared to a para-hydrogen-based cold neutron source made of a single moderator (either flat or voluminous) of the same cross-section. Analytic model calculations indicate that gains of up to approximately 2.5 in both brightness and intensity can be achieved compared to a source made of a single moderator of the same width. However, these gains are affected by details of the moderator–reflector assembly and should be estimated through dedicated Monte Carlo simulations, which can only be conducted for a particular neutron source and are beyond the scope of this general study. The gain reduction in our study, from a higher value to 2.5, is mostly caused by these two factors: the limited volume of the high-density thermal neutron region surrounding the reactor core or spallation target, which restricts the total length of the moderator assembly, and the finite width of moderator walls. The relatively large length of moderator assemblies results in a significant increase in pulse duration at short pulse neutron sources, making their straightforward use very problematic, though some applications are not excluded. The concept of “low-dimensionality” in moderators is explored, demonstrating that achieving a substantial increase in brightness necessitates moderators to be low-dimensional both geometrically, implying a high aspect ratio, and physically, requiring the moderator’s smallest dimension to be smaller than the characteristic scale of moderator medium (about the mean free path for thermal neutrons). This explains why additional compression of the moderator along the longest direction, effectively giving it a tube-like shape, does not result in a significant brightness increase comparable to the flattening of the moderator.
Full article
Figure 1
Open AccessArticle
Economic Optimization of a Hybrid Power Plant with Nuclear, Solar, and Thermal Energy Conversion to Electricity
by
Stylianos A. Papazis
J. Nucl. Eng. 2025, 6(1), 2; https://doi.org/10.3390/jne6010002 - 26 Dec 2024
Abstract
►▼
Show Figures
This research presents a new solution for optimizing the economics of energy produced by a hybrid power generation plant that converts nuclear, solar, and thermal energy into electricity while operating under load-following conditions. To achieve the benefits of cleaner electricity with minimal production
[...] Read more.
This research presents a new solution for optimizing the economics of energy produced by a hybrid power generation plant that converts nuclear, solar, and thermal energy into electricity while operating under load-following conditions. To achieve the benefits of cleaner electricity with minimal production costs, multi-criteria management decisions are applied. The investigation of a hybrid system combining nuclear, solar, and thermal energy generation demonstrates the impact of such technology on the optimal price of generated energy; the introduction of nuclear reactors in hybrid systems reduces the cost of electricity production compared to the equivalent cost of energy produced by solar systems and compared to fossil fuel thermal systems. This method can be applied to hybrid energy systems with nuclear, solar, and thermal power generation plants of various sizes and configurations, making it a useful tool for engineers, researchers, and managers in the energy sector.
Full article
Figure 1
Open AccessArticle
Risk Contextualization for Nuclear Systems
by
Gueorgui Petkov
J. Nucl. Eng. 2025, 6(1), 1; https://doi.org/10.3390/jne6010001 - 25 Dec 2024
Abstract
Risk management strives to reach the standards of theoretical systematicity and empirical precision achieved in natural science models. To this end, a set of risk-informed and performance-based standards was developed in the form of statistically validated measures. The set enables the systematic extraction
[...] Read more.
Risk management strives to reach the standards of theoretical systematicity and empirical precision achieved in natural science models. To this end, a set of risk-informed and performance-based standards was developed in the form of statistically validated measures. The set enables the systematic extraction by deterministic and probabilistic analysis of potentially objective risk assessments and well-defined decisions. However, much of the data and models are subjectively influenced by the uncertainty of the context in which they are related and derived. Current risk analysis contains a large amount of risk-related information, but without the context of the models, its results lack sufficient predictive and explanatory power to be a solid basis for decisions. Therefore, to model the entire site of a multi-unit nuclear power plant as an integrated system connecting facility and activity, it is necessary to consider not only the technological conditions, but also the entire site context, including human, organizational, and environmental factors. An interface tool for dynamic deterministic-probabilistic safety analysis should be used to contextualize and complement existing risk indicators, but not to replace them. This article presents the possibilities of risk contextualization for nuclear systems through the symptom-based context quantification procedure of the Performance Evaluation Teamwork method.
Full article
(This article belongs to the Special Issue Reliability Analysis and Risk Assessment of Nuclear Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
A 3D Dual-Particle Imaging Algorithm for Multiple Imagers
by
Dhruv Garg, Ricardo Lopez, Oskari Pakari, Shaun D. Clarke and Sara A. Pozzi
J. Nucl. Eng. 2024, 5(4), 584-600; https://doi.org/10.3390/jne5040036 - 20 Dec 2024
Abstract
►▼
Show Figures
The ability to localize and image radiation sources has found use in various applications for nuclear nonproliferation practices, specifically in treaty verification, nuclear safeguards, and homeland security. Technologies that are capable of angular radiation imaging have been prevalent for years and, recently, 3D
[...] Read more.
The ability to localize and image radiation sources has found use in various applications for nuclear nonproliferation practices, specifically in treaty verification, nuclear safeguards, and homeland security. Technologies that are capable of angular radiation imaging have been prevalent for years and, recently, 3D imaging technologies making use of emerging media like mixed reality have been rapidly developing and gaining popularity. Modern imaging techniques typically use a Compton camera to record coincident events and reconstruct the incident directional information of a gamma ray-emitting radiation source. However, Compton cameras are limited as they cannot obtain accurate source depth information when used for simple back projection imaging. Neutron scatter cameras are a complementary imaging technique that use double elastic scatters but also have their own limitations. This work presents a framework for multiple scatter-based particle imagers to construct 3D images and to localize a radiation source using gamma rays or fast neutrons. Specifically, localization is achieved by accounting for the position of the imagers. The imaging algorithm was validated using experimental data, measuring a 252Cf source. A three-dimensional representation of the imaging data provides a more intuitive and informative depiction of source positions and can aid in scenarios with complex environmental geometries such as when sources are in containers.
Full article
Figure 1
Open AccessArticle
Droplet Entrainment in Steam Supply System of Water-Cooled Small Modular Reactors: Experiment and Modeling Approaches
by
Kenneth Lee Fossum, Palash Kumar Bhowmik and Piyush Sabharwall
J. Nucl. Eng. 2024, 5(4), 563-583; https://doi.org/10.3390/jne5040035 - 12 Dec 2024
Abstract
Droplet entrainment in steam-flow is a prominent phenomenon that needs adequate safety and risk analysis of postulated transient and accident scenarios—including experimental investigation and representative modeling and simulation (M&S)—for small modular reactor (SMR) system design and demonstration. This study identifies knowledge gaps by
[...] Read more.
Droplet entrainment in steam-flow is a prominent phenomenon that needs adequate safety and risk analysis of postulated transient and accident scenarios—including experimental investigation and representative modeling and simulation (M&S)—for small modular reactor (SMR) system design and demonstration. This study identifies knowledge gaps by evaluating experimental and computational fluid dynamics modeling approaches to support early-stage reactor system design, testing, and model evaluation. Previous studies reported in the literature for steam-flow entrainment primarily focused on gigawatt capacity pressurized water reactor (PWR) systems. However, entrainment phenomena are even more prominent for PWR-type SMRs due to their more compact integrated designs, which need further research and development. To fill the research gaps, this study provides insight by specifying the phenomena of interest by leveraging the lessons learned from past research, adopting advanced M&S techniques and advanced instrumentation and control. The findings and recommendations are applicable for evaluating steam-flow entrainment models and for designing integral effect test and separate effect test facilities for gaining reactor design approvals.
Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
►▼
Show Figures
Figure 1
Open AccessFeature PaperArticle
A Comparison Study of High-Temperature Low-Cycle Fatigue Behaviour and Deformation Mechanisms Between Incoloy 800H and Its Weldments
by
Wenjing Li, Lin Xiao, Lori Walters, Greg Kasprick and Robyn Sloan
J. Nucl. Eng. 2024, 5(4), 545-562; https://doi.org/10.3390/jne5040034 - 30 Nov 2024
Abstract
►▼
Show Figures
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the
[...] Read more.
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the Incoloy 800H weldments showed lower fatigue lifetimes compared to the base metal. However, the weldments with the Haynes 230 filler metal demonstrated an improved fatigue life at the low strain amplitude compared to both Incoloy 800H and the weldment with the Inconel 82 filler metal. The Incoloy 800H base metal showed pronounced initial cyclic hardening with hardening factors increasing with strain amplitudes. In contrast, the weldments with Haynes 230 and Inconel 82 filler metals displayed short initial cyclic hardening and saturation stages, followed by long continuous cyclic softening. The fractography and microstructure after LCF the tests were characterized with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Transgranular fracture with multiple crack initiations was the predominant failure mode on the fracture surfaces of both Incoloy 800 base metal and the weldments. TEM examination revealed that planar dislocation slips at the low strain amplitude evolved to wavy slips, eventually forming a cell structure at high strain amplitudes in the Incoloy 800H material as the strain amplitudes increased. However, the weld metal exhibited a planar slip mode deformation mechanism regardless of cyclic strain amplitude in the weldment specimens. The differing cyclic hardening and softening behaviours between Incoloy 800H and its weldments are attributed to the higher strength of the weldment specimens compared to the base metal. In the Incoloy 800H base material specimens, the reverse strains during LCF created wavy dislocation structures, which could not fully recover due to the non-reversible nature of the microstructure. As a result, cells or subgrains formed within the microstructure once created. In contrast, the higher strength of the weld metal in the weldment specimens significantly suppressed the formation of wavy dislocation structures, and deformation primarily manifested as planar arrays of dislocations.
Full article
Figure 1
Open AccessArticle
The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS
by
Indrek Jõgi, Jasper Ristkok and Peeter Paris
J. Nucl. Eng. 2024, 5(4), 531-544; https://doi.org/10.3390/jne5040033 - 22 Nov 2024
Abstract
►▼
Show Figures
Laser-Induced Breakdown Spectroscopy (LIBS) is one candidate for analyzing the fuel retention in ITER plasma-facing components during maintenance breaks when the reactor is filled with near atmospheric pressure nitrogen or dry air. It has been shown that using argon flow during LIBS measurements
[...] Read more.
Laser-Induced Breakdown Spectroscopy (LIBS) is one candidate for analyzing the fuel retention in ITER plasma-facing components during maintenance breaks when the reactor is filled with near atmospheric pressure nitrogen or dry air. It has been shown that using argon flow during LIBS measurements increases the LIBS signal at atmospheric pressure conditions and helps to distinguish the hydrogen isotopes. However, atmospheric pressure might be suboptimal for such LIBS measurements. The present study investigated the effect of argon or nitrogen gas at different pressures on the hydrogen Hα line emission intensity during the LIBS measurements. Laser pulses with an 8 ns width were used to ablate a small amount of a molybdenum (Mo) target with hydrogen impurity. The development of the formed plasma plume was investigated by time- and space-resolved emission spectra and photographs. Photographs showed that the plasma plume development was similar for both gases, while the total intensity of the plume was higher in argon. Space-resolved emission spectra also had stronger Hα line intensities in argon. Shorter delay times necessitated the use of lower pressures to have sufficiently narrow lines for the distinguishing of the hydrogen isotopes. At the same line widths, the line intensities were higher at lower gas pressures and in argon. Hα and Mo I line emissions were spatially separated, which suggests that the geometry of collection optics should be considered when using LIBS.
Full article
Figure 1
Open AccessReview
Evaluating Nuclear Forensic Signatures for Advanced Reactor Deployment: A Research Priority Assessment
by
Megan N. Schiferl, Jeffrey R. McLachlan, Appie A. Peterson, Naomi E. Marks and Rebecca J. Abergel
J. Nucl. Eng. 2024, 5(4), 518-530; https://doi.org/10.3390/jne5040032 - 15 Nov 2024
Abstract
The development and deployment of a new generation of nuclear reactors necessitates a thorough evaluation of techniques used to characterize nuclear materials for nuclear forensic applications. Advanced fuels proposed for use in these reactors present both challenges and opportunities for the nuclear forensic
[...] Read more.
The development and deployment of a new generation of nuclear reactors necessitates a thorough evaluation of techniques used to characterize nuclear materials for nuclear forensic applications. Advanced fuels proposed for use in these reactors present both challenges and opportunities for the nuclear forensic field. Many efforts in pre-detonation nuclear forensics are currently focused on the analysis of uranium oxides, uranium ore concentrates, and fuel pellets since these materials have historically been found outside of regulatory control. The increasing use of TRISO particles, metal fuels, molten fuel salts, and novel ceramic fuels will require an expansion of the current nuclear forensic suite of signatures to accommodate the different physical dimensions, chemical compositions, and material properties of these advanced fuel forms. In this work, a semi-quantitative priority scoring system is introduced to identify the order in which the nuclear forensics community should pursue research and development on material signatures for advanced reactor designs. This scoring system was applied to propose the following priority ranking of six major advanced reactor categories: (1) molten salt reactor (MSR), (2) liquid metal-cooled reactor (LMR), (3) very-high-temperature reactor (VHTR), (4) fluoride-salt-cooled high-temperature reactor (FHR), (5) gas-cooled fast reactor (GFR), and (6) supercritical water-cooled reactor (SWCR).
Full article
(This article belongs to the Special Issue Nuclear Security and Nonproliferation Research and Development)
►▼
Show Figures
Figure 1
Open AccessArticle
Intracore Natural Circulation Study in the High Temperature Test Facility
by
Izabela Gutowska, Robert Kile, Brian G. Woods and Nicholas R. Brown
J. Nucl. Eng. 2024, 5(4), 500-517; https://doi.org/10.3390/jne5040031 - 14 Nov 2024
Abstract
►▼
Show Figures
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant
[...] Read more.
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant flow through the core is lost. Depending on the steam generator placement, loop or intracore natural circulation develops to help transfer heat from the core to the reactor cavity, cooling system. This paper investigates the fundamental physical phenomena associated with intracore coolant natural circulation flow in a one-sixth Computational Fluid Dynamics (CFD) model of the Oregon State University High Temperature Test Facility (OSU HTTF) following a loss-of-flow accident transient. This study employs conjugate heat transfer and steady-state flow along with an SST k-ω turbulence model to characterize the phenomenon of core channel-to-channel natural convection. Previous studies have revealed the importance of complex flow distribution in the inlet and outlet plenums with the potential to generate hot coolant jets. For this reason, complete upper and lower plenum volumes are included in the analyzed computational domain. CFD results also include parametric studies performed for a mesh sensitivity analysis, generated using the STAR-CCM+ software. The resulting channel axial velocities and flow directions support the test facility scaling analysis and similarity group distortions calculation.
Full article
Figure 1
Open AccessArticle
External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons
by
Graham Medlin, Ekaterina Korobkina, Cole Teander, Bernard Wehring, Eduard Sharapov, Ayman I. Hawari, Paul Huffman, Albert R. Young, Grant Palmquist, Matthew Morano, Clark Hickman, Thomas Rao and Robert Golub
J. Nucl. Eng. 2024, 5(4), 486-499; https://doi.org/10.3390/jne5040030 - 18 Oct 2024
Abstract
►▼
Show Figures
The ultra-cold neutron (UCN) source being commissioned at North Carolina State University’s PULSTAR reactor is uniquely optimized for UCN production in the former graphite-filled thermal column outside of the reactor pool. The source utilizes a remote moderation design, which is particularly well suited
[...] Read more.
The ultra-cold neutron (UCN) source being commissioned at North Carolina State University’s PULSTAR reactor is uniquely optimized for UCN production in the former graphite-filled thermal column outside of the reactor pool. The source utilizes a remote moderation design, which is particularly well suited to the PULSTAR reactor because of its high thermal and epithermal neutron leakage from the core face. This large non-equilibrium flux from the core is efficiently transported to the UCN source through the specially designed beam port in order to optimize UCN production at any given reactor power. The increased distance to the source from the core also greatly limits the heat load on the cryogenic system. A MCNP (Monte Carlo N-Particle) model of this system was developed and is in good agreement with gold foil activation measurements using a test configuration as well as with the real UCN source’s heavy water moderator. These results established a firm baseline for estimates of the cold neutron flux available for UCN production and prove that remote moderation in a thermal column port is a valuable option for future designs of cryogenic UCN sources.
Full article
Graphical abstract
Open AccessPerspective
An Overview of Probabilistic Safety Assessment for Nuclear Safety: What Has Been Done, and Where Do We Go from Here?
by
Adolphus Lye, Jathniel Chang, Sicong Xiao and Keng Yeow Chung
J. Nucl. Eng. 2024, 5(4), 456-485; https://doi.org/10.3390/jne5040029 - 16 Oct 2024
Abstract
►▼
Show Figures
The paper provides an introduction to the concept of Probabilistic Safety Assessment, an evaluation of its recent developments, and perspectives on the future research directions in this area. To do so, a conceptual understanding to safety assessment is first provided, followed by an
[...] Read more.
The paper provides an introduction to the concept of Probabilistic Safety Assessment, an evaluation of its recent developments, and perspectives on the future research directions in this area. To do so, a conceptual understanding to safety assessment is first provided, followed by an introduction to what Probabilistic Safety Assessment is about. From this, the historical background and development of Probabilistic Safety Assessment in the context of nuclear safety are discussed, including a brief description and evaluation of some methods implemented to perform such analysis. After this, the paper reviews some of the recent research developments in Probabilistic Safety Assessment in the aspects of multi-unit safety assessment, dynamic Probabilistic Safety Assessment, reliability analysis, cyber-security, and policy-making. Each aspect is elaborated in detail, with perspectives provided on its potential limitations. Finally, the paper discusses research topics in six areas and challenges within the Probabilistic Safety Assessment discipline, for which further investigation might be conducted in the future. Hence, the objectives of the review paper are (1) to serve as a tutorial for readers who are new to the concept of Probabilistic Safety Assessment; (2) to provide a historical perspective on the development of the Probabilistic Safety Assessment field over the past seven decades; (3) to review the state-of-the-art developments in the use of Probabilistic Safety Assessment in the context of nuclear safety; (4) to provide an evaluative perspective on the methods implemented for Probabilistic Safety Assessment within the current literature; and (5) to provide perspectives on the future research directions that can potentially be explored, thereby also targeting the wider research community within the nuclear safety discipline towards pushing the frontiers of Probabilistic Safety Assessment research.
Full article
Figure 1
Open AccessArticle
Experimental and Numerical Study on the Characteristics of Bubble Motion in a Narrow Channel
by
Borong Tang, Shenfei Wang, Fang Liu and Fenglei Niu
J. Nucl. Eng. 2024, 5(4), 445-455; https://doi.org/10.3390/jne5040028 - 15 Oct 2024
Abstract
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels.
[...] Read more.
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. This paper investigates the vertical rise of bubbles in narrow slit channels. A gas–liquid two-phase flow experimental rig was constructed using transparent acrylic boards. A high-speed camera captured the bubble formation process during gas injection, and code implemented in Matlab was used to process the images. Numerical simulations were conducted with CFD software under identical conditions and compared with the experimental results, showing a good agreement. The results show that the experimental and simulated bubble movement velocities are in good agreement. In the experiments of this paper, when the width of the narrow gap is below 3 mm, the sidewalls exert a pronounced influence on the dynamics of bubble rise, notably altering both the velocity profile and the trajectory of the bubbles’ ascent. As the gas injection flow rate gradually increases, the bubble rising speed and trajectory change from regular to oscillatory patterns.
Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
►▼
Show Figures
Figure 1
Open AccessArticle
Long-Term Afterglow Measurement of Scintillators after Gamma Irradiation
by
Ladislav Viererbl, Hana Assmann Vratislavská and Antonín Kolros
J. Nucl. Eng. 2024, 5(4), 436-444; https://doi.org/10.3390/jne5040027 - 5 Oct 2024
Abstract
►▼
Show Figures
The long-term afterglow of scintillators is an important aspect, especially when the light signal from a scintillator is evaluated in the current mode. Scintillators used for radiation detection exhibit an afterglow, which usually comes from multiple components that have different decay times. A
[...] Read more.
The long-term afterglow of scintillators is an important aspect, especially when the light signal from a scintillator is evaluated in the current mode. Scintillators used for radiation detection exhibit an afterglow, which usually comes from multiple components that have different decay times. A high level of afterglow usually has a negative influence on the detection parameters for the energy resolution in spectrometry measurements or X-ray and neutron imaging. The paper deals with the long-term afterglow of some types of scintillators, which is more significant for integral measurement when the current is measured in a photodetector. The range of decay times studied was in the order of tens of seconds to days. Seven types of scintillators were examined: BGO, CaF2(Eu), CdWO4, CsI(Tl), LiI(Eu), NaI(Tl), and plastic scintillator. The scintillators were excited by gamma-ray radiation. After irradiation, the detection unit, along with the scintillator, was moved to a laboratory where the anode current of the photomultiplier tube was measured using a picoammeter for at least a day. The measurements showed that CdWO4 and plastic scintillators have relatively low long-term afterglow signals in comparison to the other scintillators studied.
Full article
Figure 1
Open AccessArticle
Multiscale Approach of Investigating the Density of Simulated Fuel for a Zero Power Reactor
by
Suneela Sardar, Claude Degueldre and Sarah Green
J. Nucl. Eng. 2024, 5(3), 420-435; https://doi.org/10.3390/jne5030026 - 20 Sep 2024
Abstract
►▼
Show Figures
With growing interest in molten salts as possible nuclear fuel systems, knowledge of thermophysical properties of complex salt mixtures, e.g., NaCl-CeCl3, NaCl-UCl3 and NaCl-UCl4, informs understanding and performance modelling of the zero power salt reactor. Fuel density is
[...] Read more.
With growing interest in molten salts as possible nuclear fuel systems, knowledge of thermophysical properties of complex salt mixtures, e.g., NaCl-CeCl3, NaCl-UCl3 and NaCl-UCl4, informs understanding and performance modelling of the zero power salt reactor. Fuel density is a key parameter that is examined in a multiscale approach in this paper. In the zero power reactor ‘core’ (cm level), the relative fuel density is estimated for the fuel pin disposition, as well as a function of their pitch (strong effect). Fuel density of the ‘pellet’ (mm–µm level) is first estimated on a geometrical basis, then through tracking pores and cracks using 2D (SEM) and 3D (laser microscopy, LM) techniques. For the nanoscale level, ‘grains’ analysis is done using X-ray diffraction (XRD), revealing the defects, vacancies and swelled grains. Initially, emphasis is on the near-eutectic composition of salt mixtures of CeCl3 with NaCl as the carrier salt. Cerium trichloride (CeCl3) is an inactive surrogate of UCl3 and PuCl3. The results were measured for the specific salt mixture (70 mol% NaCl and 30 mol% CeCl3) in this work, establishing that microscopy and XRD are important techniques for measurement of the physical properties of salts component pellets. This work is of significance, as densities of fuel components affect the power evolution through reactivity and the average neutronic behaviour in zero power salt reactors.
Full article
Figure 1
Open AccessArticle
Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System
by
Christopher Raymond, Olufemi A. Omitaomu, Kenneth Franzese, Michael J. Wagner and Ben Lindley
J. Nucl. Eng. 2024, 5(3), 402-419; https://doi.org/10.3390/jne5030025 - 19 Sep 2024
Cited by 1
Abstract
►▼
Show Figures
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends
[...] Read more.
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends on the proper selection of each system’s location and design limitations. In this paper, co-siting options for IES that couple nuclear and concentrating solar power (CSP) with thermal desalination are investigated. A comprehensive siting analysis is performed that utilizes global information survey data to determine possible co-siting options for nuclear and solar thermal generation in the United States. Viable co-siting options are distributed across the Southwestern U.S., with the greatest concentration of siting options in the southern Great Plains, although siting with higher solar direct normal irradiance is possible in other states such as Arizona and New Mexico. Brackish water desalination is also attractive across the southwest U.S. due to high water stress, but for brackish water desalination reverse osmosis (an electricity driven process) is most cost- and energy-efficient, which does not require co-siting with the thermal generator. The most attractive state for nuclear and thermal desalination (which is more attractive when using seawater) is Texas, although other areas may become attractive as water stress increases over the coming decades. Co-siting of all CSP and thermal desalination is challenging as attractive CSP sites are not coastal.
Full article
Figure 1
Open AccessArticle
The Evaluation of Machine Learning Techniques for Isotope Identification Contextualized by Training and Testing Spectral Similarity
by
Aaron P. Fjeldsted, Tyler J. Morrow, Clayton D. Scott, Yilun Zhu, Darren E. Holland, Azaree T. Lintereur and Douglas E. Wolfe
J. Nucl. Eng. 2024, 5(3), 373-401; https://doi.org/10.3390/jne5030024 - 18 Sep 2024
Abstract
Precise gamma-ray spectral analysis is crucial in high-stakes applications, such as nuclear security. Research efforts toward implementing machine learning (ML) approaches for accurate analysis are limited by the resemblance of the training data to the testing scenarios. The underlying spectral shape of synthetic
[...] Read more.
Precise gamma-ray spectral analysis is crucial in high-stakes applications, such as nuclear security. Research efforts toward implementing machine learning (ML) approaches for accurate analysis are limited by the resemblance of the training data to the testing scenarios. The underlying spectral shape of synthetic data may not perfectly reflect measured configurations, and measurement campaigns may be limited by resource constraints. Consequently, ML algorithms for isotope identification must maintain accurate classification performance under domain shifts between the training and testing data. To this end, four different classifiers (Ridge, Random Forest, Extreme Gradient Boosting, and Multilayer Perceptron) were trained on the same dataset and evaluated on twelve other datasets with varying standoff distances, shielding, and background configurations. A tailored statistical approach was introduced to quantify the similarity between the training and testing configurations, which was then related to the predictive performance. Wilcoxon signed-rank tests revealed that the OVR-wrapped XGB significantly outperformed the other algorithms, with confidence levels of 99.0% or above for the 133Ba, 60Co, 137Cs, and 152Eu sources. The findings from this work are significant as they outline techniques to promote the development of robust ML-based approaches for isotope identification.
Full article
(This article belongs to the Special Issue Nuclear Security and Nonproliferation Research and Development)
►▼
Show Figures
Figure 1
Open AccessArticle
First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differential Equations: Mathematical Framework and Illustrative Application to the Nordheim–Fuchs Reactor Safety Model
by
Dan Gabriel Cacuci
J. Nucl. Eng. 2024, 5(3), 347-372; https://doi.org/10.3390/jne5030023 - 13 Sep 2024
Cited by 1
Abstract
This work introduces the mathematical framework of the novel “First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differential Equations” (1st-CASAM-NODE) which yields exact expressions for the first-order sensitivities of NODE decoder responses to the NODE parameters, including encoder initial conditions, while enabling
[...] Read more.
This work introduces the mathematical framework of the novel “First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differential Equations” (1st-CASAM-NODE) which yields exact expressions for the first-order sensitivities of NODE decoder responses to the NODE parameters, including encoder initial conditions, while enabling the most efficient computation of these sensitivities. The application of the 1st-CASAM-NODE is illustrated by using the Nordheim–Fuchs reactor dynamics/safety phenomenological model, which is representative of physical systems that would be modeled by NODE while admitting exact analytical solutions for all quantities of interest (hidden states, decoder outputs, sensitivities with respect to all parameters and initial conditions, etc.). This work also lays the foundation for the ongoing work on conceiving the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differential Equations” (2nd-CASAM-NODE) which aims at yielding exact expressions for the second-order sensitivities of NODE decoder responses to the NODE parameters and initial conditions while enabling the most efficient computation of these sensitivities.
Full article
(This article belongs to the Special Issue Reliability Analysis and Risk Assessment of Nuclear Systems)
Open AccessArticle
Evaluation of δ-Phase ZrH1.4 to ZrH1.7 Thermal Neutron Scattering Laws Using Ab Initio Molecular Dynamics Simulations
by
Vedant K. Mehta, Daniel A. Rehn and Pär A. T. Olsson
J. Nucl. Eng. 2024, 5(3), 330-346; https://doi.org/10.3390/jne5030022 - 13 Sep 2024
Abstract
►▼
Show Figures
Zirconium hydride is commonly used for next-generation reactor designs due to its excellent hydrogen retention capacity at temperatures below 1000 K. These types of reactors operate at thermal neutron energies and require accurate representation of thermal scattering laws (TSLs) to optimize moderator performance
[...] Read more.
Zirconium hydride is commonly used for next-generation reactor designs due to its excellent hydrogen retention capacity at temperatures below 1000 K. These types of reactors operate at thermal neutron energies and require accurate representation of thermal scattering laws (TSLs) to optimize moderator performance and evaluate the safety indicators for reactor design. In this work, we present an atomic-scale representation of sub-stoichiometric ZrH2−x , which relies on ab initio molecular dynamics (AIMD) in tandem with velocity auto-correlation (VAC) analysis to generate phonon density of states (DOS) for TSL development. The novel NJOY+NCrystal tool, developed by the European Spallation Source community, was utilized to generate the TSL formulations in the A Compact ENDF (ACE) format for its utility in neutron transport software. First, stoichiometric zirconium hydride cross sections were benchmarked with experiments. Then sub-stoichiometric zirconium hydride TSLs were developed. Significant deviations were observed between the new -phase ZrH2−x TSLs and the TSLs in the current ENDF release. It was also observed that varying the hydrogen vacancy defect concentration and sites did not cause as significant a change in the TSLs (e.g., ZrH1.4 vs. ZrH1.7) as was caused by the lattice transformation from - to -phase.
Full article
Figure 1
Open AccessArticle
Mini-Reactor Proliferation-Resistant Fuel with Burnable Gadolinia in Once-Through Operation Cycle Performance Verification
by
John D. Bess, Gray S. Chang, Patrick Moo and Julie Foster
J. Nucl. Eng. 2024, 5(3), 318-329; https://doi.org/10.3390/jne5030021 - 28 Aug 2024
Abstract
►▼
Show Figures
A miniature nuclear reactor is desirable for deployment as a localized nuclear power station in support of a carbon-free power supply. Coupling aspects of proliferation-resistant fuel with natural burnable absorber loading are evaluated for once-through operation cycle performance to minimize the need for
[...] Read more.
A miniature nuclear reactor is desirable for deployment as a localized nuclear power station in support of a carbon-free power supply. Coupling aspects of proliferation-resistant fuel with natural burnable absorber loading are evaluated for once-through operation cycle performance to minimize the need for refueling and fuel shuffling operations. The incorporation of 0.075 wt.% 237Np provides favorable plutonium isotopic vectors throughout an operational lifetime of 5.5 years. providing 35 MWe. Core performance was assessed using a verification-by-comparison approach for core designs with or without 237Np and/or gadolinia burnable absorber. Burnup Monte Carlo calculations were performed via MCOS coupling of MCNP and ORIGEN to an achievable burnup of ~62.5 GWd/t. The results demonstrate a minimal penalty to reactor performance due to the addition of these materials as compared against the reference design. Coupling of a proliferation-resistant fuel concept with a uniform loading of natural gadolinia burnable absorber for LEU+ fuel (7.5 wt.% 235U/U UO2) provides favorable excess reactivity considerations with minimized concerns for additional residual waste and more uniform distribution of un-depleted 235U in discharged fuel assemblies.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
J. Imaging, JNE, NDT, Radiation, Buildings
Nondestructive Testing and Evaluation
Topic Editors: Youngseok Lee, Ho Kyung Kim, Zheng TongDeadline: 31 May 2026
Conferences
Special Issues
Special Issue in
JNE
Fusion Materials with a Focus on Industrial Scale-Up
Guest Editors: Jan Willem Coenen, Thomas P. DavisDeadline: 31 March 2025
Special Issue in
JNE
Validation of Code Packages for Light Water Reactor Physics Analysis
Guest Editor: Kang Seog KimDeadline: 31 May 2025
Special Issue in
JNE
Advances in Thermal Hydraulics of Nuclear Power Plants
Guest Editors: Milica Ilic, Piyush SabharwallDeadline: 25 July 2025
Special Issue in
JNE
Probabilistic Safety Assessment and Management of Nuclear Facilities
Guest Editors: Enrico Zio, Ibrahim AhmedDeadline: 15 September 2025