The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plasma Plume Images
3.2. Determination of Hα and Mo I Line Intensities
3.3. Spatial and Temporal Distribution of Hα and Mo I Line Intensities
3.4. Time-Dependence of Hα Line Intensity and FWHM Values at the Emission Maximum
3.5. Comparison of Hα Intensity and FWHM Values
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girard, J.P.; Garin, P.; Taylor, N.; Uzan-Elbez, J.; Rodríguez-Rodrigo, L.; Gulden, W. ITER, safety and licensing. Fusion. Eng. Des. 2007, 82, 506–510. [Google Scholar] [CrossRef]
- Lukacs, M.; Williams, L.G. Nuclear safety issues for fusion power plants. Fusion. Eng. Des. 2020, 150, 111377. [Google Scholar] [CrossRef]
- Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; et al. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices. Nucl. Fusion. 2013, 53, 093002. [Google Scholar] [CrossRef]
- Van Der Meiden, H.J.; Almaviva, S.; Butikova, J.; Dwivedi, V.; Gasior, P.; Gromelski, W.; Hakola, A.; Jiang, X.; Jõgi, I.; Karhunen, J.; et al. Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic. Nucl. Fusion. 2021, 61, 125001. [Google Scholar] [CrossRef]
- Semerok, A.; Grisolia, C. LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography. Nucl. Instrum. Methods Phys. Res. A 2013, 720, 31–35. [Google Scholar] [CrossRef]
- Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; et al. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS. Phys. Scr. 2017, 2017, 014046. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Maddaluno, G.; Mosetti, P.; Palucci, A.; Reale, A.; Gasior, P.; Gromelski, W.; et al. LIBS measurements inside the FTU vacuum vessel by using a robotic arm. Fusion. Eng. Des. 2021, 169, 112638. [Google Scholar] [CrossRef]
- Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Laguardia, L.; Gasior, P.; Kubkowska, M. Detection by LIBS of the deuterium retained in the FTU toroidal limiter. Nucl. Mater. Energy 2019, 18, 208–211. [Google Scholar] [CrossRef]
- Favre, A.; Bultel, A.; Sankhe, M.L.; Vartanian, S.; Bruno, V.; Morel, V.; L’Hermite, D.; Sirven, J.B.; Diez, M.; Missirlian, M.; et al. A step towards the diagnostic of the ITER first wall: In-situ LIBS measurements in the WEST tokamak. Phys. Scr. 2024, 99, 035609. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Amoruso, S.; De Pascale, O. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas. Spectrochim. Acta Part B Spectrosc. 2012, 78, 1–19. [Google Scholar] [CrossRef]
- Kautz, E.J.; Rönnebro, E.C.E.; Devaraj, A.; Senor, D.J.; Harilal, S.S. Detection of hydrogen isotopes in Zircaloy-4: Via femtosecond LIBS. J. Anal. Spectrom. 2021, 36, 1217–1227. [Google Scholar] [CrossRef]
- Jõgi, I.; Ristkok, J.; Raud, J.; Butikova, J.; Mizohata, K.; Paris, P. Laser induced breakdown spectroscopy for hydrogen detection in molybdenum at atmospheric pressure mixtures of argon and nitrogen. Fusion. Eng. Des. 2022, 179, 113131. [Google Scholar] [CrossRef]
- Jõgi, I.; Ristkok, J.; Butikova, J.; Raud, J.; Paris, P. LIBS plasma in atmospheric pressure argon, nitrogen and helium: Spatio-temporal distribution of plume emission and Hα linewidth. Nucl. Mater. Energy 2023, 37, 101543. [Google Scholar] [CrossRef]
- Idris, N.; Kurniawan, H.; Lie, T.J.; Pardede, M.; Suyanto, H.; Hedwig, R.; Kobayashi, T.; Kagawa, K.; Maruyama, T. Characteristics of hydrogen emission in laser plasma induced by focusing fundamental Q-sw YAG laser on solid samples. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2004, 43, 4221–4228. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Maddaluno, G.; Mosetti, P.; Palucci, A.; Reale, A.; Gasior, P.; Gromelski, W.; et al. LIBS measurements inside the FTU vessel mock-up by using a robotic arm. Fusion. Eng. Des. 2020, 157, 111685. [Google Scholar] [CrossRef]
- Paris, P.; Butikova, J.; Laan, M.; Aints, M.; Hakola, A.; Piip, K.; Tufail, I.; Veis, P. Detection of deuterium retention by LIBS at different background pressures. Phys. Scr. 2017, T170, 014003. [Google Scholar] [CrossRef]
- Mittelmann, S.; Touchet, K.; Mao, X.; Park, M.; Brezinsek, S.; Pretzler, G.; Zorba, V. Hydrogen isotope analysis in W-tiles using fs-LIBS. Sci. Rep. 2023, 13, 2285. [Google Scholar] [CrossRef]
- Capitelli, M.; Casavola, A.; Colonna, G.; De Giacomo, A. Laser-induced plasma expansion: Theoretical and experimental aspects. Spectrochim. Acta Part B Spectrosc. 2004, 59, 271–289. [Google Scholar] [CrossRef]
- Kautz, E.J.; Devaraj, A.; Senor, D.J.; Harilal, S.S. Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy. Opt. Express 2021, 29, 4936. [Google Scholar] [CrossRef]
- Ciucci, A.; Corsi, M.; Palleschi, V.; Rastelli, S.; Salvetti, A.; Tognoni, E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999, 53, 960–964. [Google Scholar] [CrossRef]
- Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V. Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art. Spectrochim. Acta Part B Spectrosc. 2010, 65, 1–14. [Google Scholar] [CrossRef]
- Jõgi, I.; Paris, P.; Piip, K.; Ristkok, J.; Talviste, R.; Piirsoo, H.M.; Tamm, A.; Grigore, E.; Hakola, A.; Tyburska-Pueschel, B.; et al. LIBS applicability for investigation of re-deposition and fuel retention in tungsten coatings exposed to pure and nitrogen-mixed deuterium plasmas of Magnum-PSI. Phys. Scr. 2021, 96, 114010. [Google Scholar] [CrossRef]
- Paris, P.; Jõgi, I.; Piip, K.; Passoni, M.; Dellasega, D.; Grigore, E.; Arnoldbik, W.M.; van der Meiden, H. In-situ LIBS and NRA deuterium retention study in porous W-O and compact W coatings loaded by Magnum-PSI. Fusion. Eng. Des. 2021, 168, 23–27. [Google Scholar] [CrossRef]
- Likonen, J.; Coad, J.P.; Alves, E.; Catarino, N.; Coffey, I.; Krat, S.; Mayer, M.; Mizohata, K.; Widdowson, A. Material transport from marker tiles in the JET divertor. Nucl. Mater. Energy 2023, 36, 101505. [Google Scholar] [CrossRef]
- Rubel, M.; Moon, S.; Petersson, P.; Widdowson, A.; Pitts, R.A.; Aleiferis, S.; Fortuna-Zaleśna, E.; De Temmerman, G.; Reichle, R. First mirror erosion-deposition studies in JET using an ITER-like mirror test assembly. Nucl. Fusion. 2021, 61, 046022. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragón, C. Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures. Appl. Surf. Sci. 2002, 197–198, 273–280. [Google Scholar] [CrossRef]
- Mercadier, L.; Hermann, J.; Grisolia, C.; Semerok, A. Analysis of deposited layers on plasma facing components by laser-induced breakdown spectroscopy: Towards ITER tritium inventory diagnostics. J. Nucl. Mater. 2011, 415, S1187–S1190. [Google Scholar] [CrossRef]
- Mercadier, L.; Hermann, J.; Grisolia, C.; Semerok, A. Diagnostics of nonuniform plasmas for elemental analysis via laser-induced breakdown spectroscopy: Demonstration on carbon-based materials. J. Anal. Spectrom. 2013, 28, 1446–1455. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Bengoechea, J.; Aragón, C. Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances. Spectrochim. Acta Part B Spectrosc. 2004, 59, 461–469. [Google Scholar] [CrossRef]
- Kautz, E.J.; Senor, D.J.; Harilal, S.S. The interplay between laser focusing conditions, expansion dynamics, ablation mechanisms, and emission intensity in ultrafast laser-produced plasmas. J. Appl. Phys. 2021, 130, 204901. [Google Scholar] [CrossRef]
- Sharma, A.K.; Thareja, R.K. Plume dynamics of laser-produced aluminum plasma in ambient nitrogen. Appl. Surf. Sci. 2005, 243, 68–75. [Google Scholar] [CrossRef]
- Farid, N.; Harilal, S.S.; Ding, H.; Hassanein, A. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. J. Appl. Phys. 2014, 115, 033107. [Google Scholar] [CrossRef]
- Singh, R.P.; Gupta, S.L.; Thareja, R.K. Optical probe investigation of laser ablated carbon plasma plume in nitrogen ambient. Phys. Plasmas 2013, 20, 123509. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.11); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024. Available online: https://physics.nist.gov/asd (accessed on 5 November 2024).
- Kurucz, R.L.; Bell, B. Atomic Line Data, Kurucz CD-ROM No.23; Smithsonian Astrophysical Observatory: Cambridge, MA, USA, 1995. [Google Scholar]
- Bogaerts, A.; Chen, Z.; Bleiner, D. Laser ablation of copper in different background gases: Comparative study by numerical modeling and experiments. J. Anal. Spectrom. 2006, 21, 384–395. [Google Scholar] [CrossRef]
- Colonna, G.; Pascazio, G.; Bonelli, F. Advanced model for the interaction of a Ti plume produced by a ns-pulsed laser in a nitrogen environment. Spectrochim. Acta Part B Spectrosc. 2021, 179, 106120. [Google Scholar] [CrossRef]
Gas | Pressure | ||
---|---|---|---|
4 mbar | 133 mbar | 1000 mbar | |
Ar | 0.22 | 0.27 | 0.4 |
N2 | 0.52 | 0.75 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jõgi, I.; Ristkok, J.; Paris, P. The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS. J. Nucl. Eng. 2024, 5, 531-544. https://doi.org/10.3390/jne5040033
Jõgi I, Ristkok J, Paris P. The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS. Journal of Nuclear Engineering. 2024; 5(4):531-544. https://doi.org/10.3390/jne5040033
Chicago/Turabian StyleJõgi, Indrek, Jasper Ristkok, and Peeter Paris. 2024. "The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS" Journal of Nuclear Engineering 5, no. 4: 531-544. https://doi.org/10.3390/jne5040033
APA StyleJõgi, I., Ristkok, J., & Paris, P. (2024). The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS. Journal of Nuclear Engineering, 5(4), 531-544. https://doi.org/10.3390/jne5040033