Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System †
Abstract
:1. Introduction
2. Methodology
2.1. Nuclear and Solar Siting
2.2. Desalination Siting
- Water supply to the desalination facility. This is either coastal, or inland brackish water.
- Demand for potable water.
2.2.1. Desalination Technologies in the Context of Low-Temperature Cogeneration
2.2.2. Demand for Fresh Water
2.2.3. Brackish Water Availability
2.2.4. Creation of the Dataset
- Water stress in 2050 accounting for climate change as a measure for potable water demand.
- Coastline as a measure for seawater supply.
- Predicted depth to brackish groundwater as a measure for brackish water supply.
3. Results
3.1. Nuclear and CSP Co-Siting
3.2. Potable Water Demand
3.3. Brackish Water Supply
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carbon Dioxide Emissions from Electricity-World Nuclear Association. Available online: https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx (accessed on 16 July 2023).
- Koebrich, S.; Bowen, T.; Sharpe, A. 2018 Renewable Energy Data Book; U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy (EERE): Washington, DC, USA, 2020. Available online: https://www.osti.gov/biblio/1601146 (accessed on 13 September 2024).
- International Energy Association. Renewables 2021; IEA: Paris, France, 2021. [Google Scholar]
- Confronting the Duck Curve: How to Address Over-Generation of Solar Energy. Energy.gov. Available online: https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy (accessed on 16 July 2023).
- White, B.T.; Wagner, M.J.; Neises, T.; Stansbury, C.; Lindley, B. Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions. Sustainability 2021, 13, 12428. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Chen, Z.; Hu, P. Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle. Energy 2020, 197, 117282. [Google Scholar] [CrossRef]
- Qiu, B.; Li, G.; Wei, X.; Liu, M.; Yan, J. System design and operation optimization on the hybrid system with nuclear power, concentrated solar, and thermal storage. Ann. Nucl. Energy 2023, 189, 109862. [Google Scholar] [CrossRef]
- Rigby, A.; Wagner, M.J.; Lindley, B. Dynamic Modelling of Flexible Dispatch in a Novel Nuclear-Solar Integrated Energy System with Thermal Energy Storage. Ann. Nucl. Energy 2024, 204, 110534. [Google Scholar] [CrossRef]
- Rezaei, A.; Naserbeagi, A.; Alahyarizadeh, G.; Aghaie, M. Economic evaluation of Qeshm island MED-desalination plant coupling with different energy sources including fossils and nuclear power plants. Desalination 2017, 422, 101–112. [Google Scholar] [CrossRef]
- MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef]
- Compain, P. Solar Energy for Water Desalination. Procedia Eng. 2012, 46, 220–227. [Google Scholar] [CrossRef]
- Sozoniuk, V. Nuclear Desalination with the BN-350 Reactor. 2013. Available online: https://www.oecd-nea.org/ndd/workshops/nucogen/presentations/10_Sozoniuk_Nuclear-Desalination-BN350.pdf (accessed on 13th September 2024).
- Naizghi, M.; Tesfay, W.; Fath, H. Nuclear Desalination and its Viability for UAE. In Proceedings of the Sharjah International Conference on Nuclear and Renewable Energy Energies for the 21st Century (SHJ-NRE11), Sharjah, United Arab Emirates, 3–5 April 2011. [Google Scholar] [CrossRef]
- Khuwaileh, B.A.; Alzaabi, F.E.; Almomani, B.; Ali, M. Technology options and cost estimates of nuclear powered desalination in the United Arab Emirates. J. Nucl. Sci. Technol. 2023, 60, 223–237. [Google Scholar] [CrossRef]
- Omar, A.; Saldivia, D.; Li, Q.; Barraza, R.; Taylor, R.A. Techno-economic optimization of coupling a cascaded MED system to a CSP-sCO2 power plant. Energy Convers. Manag. 2021, 247, 114725. [Google Scholar] [CrossRef]
- Sharan, P.; Neises, T.; McTigue, J.D.; Turchi, C. Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle. Desalination 2019, 459, 20–33. [Google Scholar] [CrossRef]
- Soto, G.J.; Baker, U.; White, B.; Lindley, B.A.; Wagner, M.J. Modeling a Lead-Cooled Fast Reactor with Thermal Energy Storage Using Optimal Dispatch and SAM. In Proceedings of the Transactions of the American Nuclear Society, Washington, DC, USA, 20 November–3 December 2021; Volume 125, pp. 848–851. [Google Scholar]
- Ruth, M.F.; Zinaman, O.R.; Antkowiak, M.; Boardman, R.D.; Cherry, R.S.; Bazilian, M.D. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs. Energy Convers. Manag. 2014, 78, 684–694. [Google Scholar] [CrossRef]
- Arefin, M.A.; Islam, M.T.; Rashid, F.; Mostakim, K.; Masuk, N.I.; Islam, M.H.I. A Comprehensive Review of Nuclear-Renewable Hybrid Energy Systems: Status, Operation, Configuration, Benefit, and Feasibility. Front. Sustain. Cities 2021, 3, 3. Available online: https://www.frontiersin.org/articles/10.3389/frsc.2021.723910 (accessed on 16 July 2023). [CrossRef]
- Omitaomu, O.A.; Blevins, B.R.; Jochem, W.C.; Mays, G.T.; Belles, R.; Hadley, S.W.; Harrison, T.J.; Bhaduri, B.L.; Neish, B.S.; Rose, A.N. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl. Energy 2012, 96, 292–301. [Google Scholar] [CrossRef]
- Belles, R.; Mays, G.T.; Blevins, B.R.; Hadley, S.W.; Harrison, T.J.; Jochem, W.C.; Neish, B.S.; Omitaomu, O.; Rose, A.N. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012; ORNL/TM-2011/157. [CrossRef]
- Omitaomu, O.A.; Belles, R.; Roberts, N.; Worrall, A. Methods and system for siting advanced nuclear reactors and evaluating energy policy concerns. Prog. Nucl. Energy 2022, 148, 104197. [Google Scholar] [CrossRef]
- Murphy, C.; Sun, Y.; Cole, W.J.; Maclaurin, G.J.; Turchi, C.S.; Mehos, M.S. The Potential Role of Concentrating Solar Power within the Context of DOE’s 2030 Solar Cost Targets; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2019. NREL/PR-6A20-72717. Available online: https://www.osti.gov/biblio/1506623 (accessed on 16 July 2023).
- States Restrictions on New Nuclear Power Facility Construction. Available online: https://www.ncsl.org/environment-and-natural-resources/states-restrictions-on-new-nuclear-power-facility-construction#or (accessed on 16 July 2023).
- Ending Minnesota’s Nuclear Ban Has Bipartisan Support. But Would Lifting the Ban Mean New Plants?—Duluth News Tribune|News, Weather, and Sports from Duluth, Minnesota. Available online: https://www.duluthnewstribune.com/news/minnesota/ending-minnesotas-nuclear-ban-has-bipartisan-support-but-would-lifting-the-ban-mean-new-plants (accessed on 16 July 2023).
- Citizens for Energy v. Cuomo, 78 N.Y.2d 398|N.Y., Judgment, Law. Available online: https://www.casemine.com/judgement/us/5914bf6cadd7b049347adf9c (accessed on 16 July 2023).
- Solar resource map © 2021 Solargis. Available online: https://solargis.com (accessed on 13 September 2024).
- Middleton, B.; Brady, P.V.; Brown, J.J.; Lawles, S. The Palo Verde Water Cycle Model (PVWCM): Development of an Integrated Multi-Physics and Economics Model for Effective Water Management; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2021; SAND2021-5077C. [CrossRef]
- As Water Scarcity Increases, Desalination Plants Are on the Rise. Yale E360. Available online: https://e360.yale.edu/features/as-water-scarcity-increases-desalination-plants-are-on-the-rise (accessed on 16 July 2023).
- Reducing Energy Consumption for Seawater Desalination-Veerapaneni-2007-Journal AWWA-Wiley Online Library. Available online: https://awwa.onlinelibrary.wiley.com/doi/10.1002/j.1551-8833.2007.tb07958.x (accessed on 16 July 2023).
- Mickley, M.C. Membrane Concentrate Disposal: Practices and Regulation; U.S. Department of the Interior: Washington, DC, USA, 2006.
- R. 10 US EPA. NPDES Permits Around the Nation. Available online: https://www.epa.gov/npdes-permits (accessed on 16 October 2022).
- Introduction to the National Pretreatment Program; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- McCurdy, R. Underground Injection Wells for Produced Water Disposal; Chesapeake Energy Corporation: Oklahoma City, OK, USA, 2000. [Google Scholar]
- Ocean Plan Requirements for Seawater Desalination Facilities|California State Water Resources Control Board. Available online: https://www.waterboards.ca.gov/water_issues/programs/ocean/desalination/#requirements (accessed on 16 October 2022).
- Loganathan, P.; Naidu, G.; Vigneswaran, S. Mining valuable minerals from seawater: A critical review. Environ. Sci. Water Res. Technol. 2017, 3, 37–53. [Google Scholar] [CrossRef]
- Seawater Desalination Concentrate—A New Frontier for Sustainable Mining of Valuable Minerals NPJ Clean Water. Available online: https://www.nature.com/articles/s41545-022-00153-6 (accessed on 16 July 2023).
- Marshall, K. How Much Does an Industrial Water Treatment System Cost? Samco Tech. Available online: https://samcotech.com/how-much-does-an-industrial-water-treatment-system-cost/ (accessed on 16 October 2022).
- Dore, M.; Khaleghi-Moghadam, A.; Singh, R.G.; Achari, G. Costs and the Choice of Drinking Water Treatment Technology in Small and Rural Systems. Reśeau Waterne 2020, 2011, 1–36. [Google Scholar]
- Sorg, T.J.; Wang, L.; Chen, A.S.C. The costs of small drinking water systems removing arsenic from groundwater. J. Water Supply Res. Technol.-Aqua 2015, 64, 219–234. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- USGS. Brackish Groundwater and Its Potential as a Resource in the Southwestern United States. 2018. Available online: https://pubs.usgs.gov/fs/2018/3010/fs20183010_.pdf (accessed on 13 September 2024).
- Eltawil, M.A.; Zhao, Z.; Yuan, L. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Global Desalination Situation-Reverse Osmosis. Climate Policy Watcher. Available online: https://www.climate-policy-watcher.org/reverse-osmosis/global-desalination-situation.html (accessed on 16 July 2023).
- Palenzuela, P.; Alarcón-Padilla, D.C.; Zaragoza, G.; Blanco, J. Comparison between CSP+MED and CSP+RO in Mediterranean Area and MENA Region: Techno-economic Analysis. Energy Procedia 2015, 69, 1938–1947. [Google Scholar] [CrossRef]
- Stanton, J.S.; Anning, D.W.; Brown, C.J.; Moore, R.B.; McGuire, V.L.; Qi, S.L.; Harris, A.C.; Dennehy, K.F.; McMahon, P.B.; Degnan, J.R.; et al. Brackish groundwater in the United States; U.S. Geological Survey: Washington, DC, USA, 2017; p. 1833. [CrossRef]
- Epiney, A.S.; Rabiti, C.; Talbot, P.W.; Kim, J.S.; Bragg-Sitton, S.M.; Richards, J. Case Study: Nuclear-Renewable-Water Integration in Arizona; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2018; INL/EXT-18-51359-Rev000. [CrossRef]
- Rosas-Chavoya, M.; Gallardo-Salazar, J.; Serrano, P.L.; Concepcion, P.C.A.; León-Miranda, A. QGIS a constatly growing free and open-source geospatial software contributing to scientific development. Cuad. Investig. Geográfica 2021, 48, 197–213. [Google Scholar] [CrossRef]
- USDA-National Agricultural Statistics Service-Research and Science-Land Use Strata. Available online: https://www.nass.usda.gov/Research_and_Science/stratafront2b.php (accessed on 27 April 2024).
- Bouma, A.T.; Wei, Q.J.; Parsons, J.E.; Buongiorno, J.; Lienhard, J.H. Energy and water without carbon: Integrated desalination and nuclear power at Diablo Canyon. Appl. Energy 2022, 323, 119612. [Google Scholar] [CrossRef]
Exclusion Criteria | Typical Large Light Water Reactor | Typical Advanced Reactor | CSP |
---|---|---|---|
Population density (people/square mile—ppsm) | >500 ppsm within 20 miles | >500 ppsm within 4 miles | >500 ppsm |
Safe Shutdown Earthquake (Ground Acceleration) | > 0.3 | >0.3 | NA |
Wetlands/Open Waters | Avoided | Avoided | Avoided |
Protected Lands | Avoided | Avoided | Avoided |
Slope | >12% grade | >12% grade | >3% grade |
Landslide Hazard (Areas with moderate or high Risk) | Avoided | Avoided | Avoided |
100-Year Floodplain | Avoided | Avoided | Avoided |
Streamflow (Cooling water makeup) | <8.52 m3/s | NA * | <0.95 m3/s (for wet option) * |
Proximity to Hazardous Facilities (Airport—5 mi; Oil Refineries—1 mi; and Military Bases—1 mi) | Avoided | Avoided | NA |
Proximity to Fault Lines (Depends on length of fault) | Avoided | Avoided | NA |
Solar Irradiance | NA | NA | 5.0 kWh/m2/day |
Plant Footprint | 1900 m × 1900 m | 450 m × 450 m | 450 m × 450 m OR 1500 m × 1500 m ** |
Cost ($/m3) | ||||
---|---|---|---|---|
Technology | O&M | Media Replacement | Chemical | Electricity |
Adsorptive Media (AM) | 6.65 | 5.93 | 0.04 | 0.04 |
Coagulation/Filtration (CF) | 1.06 | N/A | 0.15 | 0.19 |
Ion Exchange (IX) | 1.85 | N/A | 1.47 | 0.23 |
Process | Water Type | Capacity (m3/day) | Cost ($/m3) | Thermal Energy (kWh/m3) | Electrical Energy (kWh/m3) |
---|---|---|---|---|---|
MED | Seawater | 91,000–320,000 | 0.52–1.01 | 4.0–7.0 | 1.5–2.0 |
12,000–55,000 | 0.95–1.5 | ||||
Less than 100 | 2.0–8.0 | ||||
RO | Seawater | 100,000–320,000 | 0.45–0.66 | - | 3.0–4.0 |
15,000–60,000 | 0.48–1.62 | ||||
1000–4800 | 0.70–1.72 | ||||
RO | Brackish water | 40,000 | 0.26–0.54 | - | 0.5–2.5 |
20–1200 | 0.78–1.33 | ||||
<20 | 0.56–12.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond, C.; Omitaomu, O.A.; Franzese, K.; Wagner, M.J.; Lindley, B. Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System. J. Nucl. Eng. 2024, 5, 402-419. https://doi.org/10.3390/jne5030025
Raymond C, Omitaomu OA, Franzese K, Wagner MJ, Lindley B. Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System. Journal of Nuclear Engineering. 2024; 5(3):402-419. https://doi.org/10.3390/jne5030025
Chicago/Turabian StyleRaymond, Christopher, Olufemi A. Omitaomu, Kenneth Franzese, Michael J. Wagner, and Ben Lindley. 2024. "Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System" Journal of Nuclear Engineering 5, no. 3: 402-419. https://doi.org/10.3390/jne5030025
APA StyleRaymond, C., Omitaomu, O. A., Franzese, K., Wagner, M. J., & Lindley, B. (2024). Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System. Journal of Nuclear Engineering, 5(3), 402-419. https://doi.org/10.3390/jne5030025