Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety
Abstract
:1. Introduction
2. Material and Methods
3. Testosterone Action on Prostate Growth
4. Diagnosis and Treatment of Benign Prostatic Hyperplasia and Prostate Cancer
4.1. Benign Prostatic Hyperplasia
4.2. Prostate Cancer
5. Clinical Findings
5.1. Evidence for Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer
5.1.1. Synthesis without a Meta-Analysis
5.1.2. Meta-Analyses
5.2. Correlations between Androgen and Estrogen Levels with Benign Prostatic Hyperplasia and Prostate Cancer
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, J.; McKinlay, J.B. Age trends in the level of serum testosterone and other hormones in middle-aged men: Longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef]
- Santos, H.O.; Howell, S.; Teixeira, F.J. Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters. J. Ethnopharmacol. 2019, 235, 392–405. [Google Scholar] [CrossRef]
- Santos, H.O.; Teixeira, F.J. Use of medicinal doses of zinc as a safe and efficient coadjutant in the treatment of male hypogonadism. Aging Male Off. J. Int. Soc. Study Aging Male 2020, 23, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; Howell, S.; Nichols, K.; Teixeira, F.J. Reviewing the Evidence on Vitamin D Supplementation in the Management of Testosterone Status and Its Effects on Male Reproductive System (Testis and Prostate): Mechanistically Dazzling but Clinically Disappointing. Clin. Ther. 2020, 42, e101–e114. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O. Ketogenic diet and testosterone increase: Is the increased cholesterol intake responsible? To what extent and under what circumstances can there be benefits? Hormones 2017, 16, 150–160. [Google Scholar] [CrossRef]
- McBride, J.A.; Carson, C.C., 3rd; Coward, R.M. Testosterone deficiency in the aging male. Ther. Adv. Urol. 2016, 8, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Rosenberg, M.T. A practical guide to male hypogonadism in the primary care setting. Int. J. Clin. Pract. 2010, 64, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.D.; Belakovskiy, A.; McGrath, R.; Yarrow, J.F. Testosterone Deficiency, Weakness, and Multimorbidity in Men. Sci. Rep. 2018, 8, 5897. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, T.; Frick, M.F.; Zuraw, Q.C.; Stemhagen, A.; McWhirter, C. Prevalence of hypogonadism in males aged at least 45 years: The HIM study. Int. J. Clin. Pract. 2006, 60, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, A.B.; Dixon, J.M.; Suarez, E.A.; Murad, M.H.; Guey, L.T.; Wittert, G.A. Clinical review: Endogenous testosterone and mortality in men: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3007–3019. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J. Sex. Med. 2018, 15, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Malkin, C.J.; Pugh, P.J.; Morris, P.D.; Asif, S.; Jones, T.H.; Channer, K.S. Low serum testosterone and increased mortality in men with coronary heart disease. Heart 2010, 96, 1821–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shores, M.M. Testosterone treatment and cardiovascular events in prescription database studies. Asian J. Androl. 2018, 20, 138–144. [Google Scholar] [CrossRef]
- Wittert, G.; Bracken, K.; Robledo, K.P.; Grossmann, M.; Yeap, B.B.; Handelsman, D.J.; Stuckey, B.; Conway, A.; Inder, W.; McLachlan, R.; et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): A randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021, 9, 32–45. [Google Scholar] [CrossRef]
- Khera, M.; Bhattacharya, R.K.; Blick, G.; Kushner, H.; Nguyen, D.; Miner, M.M. Improved sexual function with testosterone replacement therapy in hypogonadal men: Real-world data from the Testim Registry in the United States (TRiUS). J. Sex. Med. 2011, 8, 3204–3213. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Bhasin, D.; Berman, N.; Chen, X.; Yarasheski, K.E.; Magliano, L.; Dzekov, C.; et al. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1172–E1181. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, G.R.; Ellenberg, S.S.; Bhasin, S.; Matsumoto, A.M.; Parsons, J.K.; Preston, P.; Cauley, J.A.; Gill, T.M.; Swerdloff, R.S.; Wang, C.; et al. Prostate-Specific Antigen Levels During Testosterone Treatment of Hypogonadal Older Men: Data from a Controlled Trial. J. Clin. Endocrinol. Metab. 2019, 104, 6238–6246. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Roehrborn, C.G.; Black, L.K. The economic burden of prostate cancer. BJU Int. 2011, 108, 806–813. [Google Scholar] [CrossRef]
- Hao, S.; Ostensson, E.; Eklund, M.; Gronberg, H.; Nordstrom, T.; Heintz, E.; Clements, M. The economic burden of prostate cancer—A Swedish prevalence-based register study. BMC Health Serv. Res. 2020, 20, 448. [Google Scholar] [CrossRef]
- Randall, V.A. Role of 5 alpha-reductase in health and disease. Baillieres Clin. Endocrinol. Metab. 1994, 8, 405–431. [Google Scholar] [CrossRef]
- Cilotti, A.; Danza, G.; Serio, M. Clinical application of 5alpha-reductase inhibitors. J. Endocrinol. Investig. 2001, 24, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Li, L.; Chang, C. Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer. Clin. Investig. 2014, 4, 935–950. [Google Scholar] [CrossRef]
- Lee, J.J.; Thomas, I.C.; Nolley, R.; Ferrari, M.; Brooks, J.D.; Leppert, J.T. Biologic differences between peripheral and transition zone prostate cancer. Prostate 2015, 75, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.B. Epidemiology of clinical benign prostatic hyperplasia. Asian J. Urol. 2017, 4, 148–151. [Google Scholar] [CrossRef]
- Jones, D.; Friend, C.; Dreher, A.; Allgar, V.; Macleod, U. The diagnostic test accuracy of rectal examination for prostate cancer diagnosis in symptomatic patients: A systematic review. BMC Fam. Pract. 2018, 19, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roehrborn, C.G.; Girman, C.J.; Rhodes, T.; Hanson, K.A.; Collins, G.N.; Sech, S.M.; Jacobsen, S.J.; Garraway, W.M.; Lieber, M.M. Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound. Urology 1997, 49, 548–557. [Google Scholar] [CrossRef]
- Barry, M.J.; Fowler, F.J., Jr.; O’Leary M, P.; Bruskewitz, R.C.; Holtgrewe, H.L.; Mebust, W.K.; Cockett, A.T.; The Measurement Committee of the American Urological Association. The American Urological Association Symptom Index for Benign Prostatic Hyperplasia. J. Urol. 2017, 197, S189–S197. [Google Scholar] [CrossRef] [PubMed]
- Batista-Miranda, J.E.; Molinuevo, B.; Pardo, Y. Impact of lower urinary tract symptoms on quality of life using Functional Assessment Cancer Therapy scale. Urology 2007, 69, 285–288. [Google Scholar] [CrossRef]
- Yalla, S.V.; Sullivan, M.P.; Lecamwasam, H.S.; DuBeau, C.E.; Vickers, M.A.; Cravalho, E.G. Correlation of American Urological Association symptom index with obstructive and nonobstructive prostatism. J. Urol. 1995, 153, 674–679. [Google Scholar] [CrossRef]
- Monda, J.M.; Oesterling, J.E. Medical treatment of benign prostatic hyperplasia: 5 alpha-reductase inhibitors and alpha-adrenergic antagonists. Mayo Clin. Proc. 1993, 68, 670–679. [Google Scholar] [CrossRef]
- Lerner, L.B.; McVary, K.T.; Barry, M.J.; Bixler, B.R.; Dahm, P.; Das, A.K.; Gandhi, M.C.; Kaplan, S.A.; Kohler, T.S.; Martin, L.; et al. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE PART I-Initial Work-up and Medical Management. J. Urol. 2021, 206, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Andriole, G.; Bruchovsky, N.; Chung, L.W.; Matsumoto, A.M.; Rittmaster, R.; Roehrborn, C.; Russell, D.; Tindall, D. Dihydrotestosterone and the prostate: The scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol. 2004, 172, 1399–1403. [Google Scholar] [CrossRef]
- Swyer, G.I. Post-natal growth changes in the human prostate. J. Anat. 1944, 78, 130–145. [Google Scholar]
- Huggins, C. The Etiology of Benign Prostatic Hypertrophy. Bull. N. Y. Acad. Med. 1947, 23, 696–704. [Google Scholar]
- Gann, P.H.; Hennekens, C.H.; Longcope, C.; Verhoek-Oftedahl, W.; Grodstein, F.; Stampfer, M.J. A prospective study of plasma hormone levels, nonhormonal factors, and development of benign prostatic hyperplasia. Prostate 1995, 26, 40–49. [Google Scholar] [CrossRef]
- Hernández, J.; Thompson, I.M. Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer 2004, 101, 894–904. [Google Scholar] [CrossRef]
- Okotie, O.T.; Roehl, K.A.; Han, M.; Loeb, S.; Gashti, S.N.; Catalona, W.J. Characteristics of prostate cancer detected by digital rectal examination only. Urology 2007, 70, 1117–1120. [Google Scholar] [CrossRef]
- Streicher, J.; Meyerson, B.L.; Karivedu, V.; Sidana, A. A review of optimal prostate biopsy: Indications and techniques. Ther. Adv. Urol. 2019, 11, 1756287219870074. [Google Scholar] [CrossRef]
- Tagai, E.K.; Miller, S.M.; Kutikov, A.; Diefenbach, M.A.; Gor, R.A.; Al-Saleem, T.; Chen, D.Y.T.; Fleszar, S.; Roy, G. Prostate Cancer Patients’ Understanding of the Gleason Scoring System: Implications for Shared Decision-Making. J. Cancer Educ. Off. J. Am. Assoc. Cancer Educ. 2019, 34, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Gordetsky, J.; Epstein, J. Grading of prostatic adenocarcinoma: Current state and prognostic implications. Diagn. Pathol. 2016, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierorazio, P.M.; Walsh, P.C.; Partin, A.W.; Epstein, J.I. Prognostic Gleason grade grouping: Data based on the modified Gleason scoring system. BJU Int. 2013, 111, 753–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanda, M.G.; Cadeddu, J.A.; Kirkby, E.; Chen, R.C.; Crispino, T.; Fontanarosa, J.; Freedland, S.J.; Greene, K.; Klotz, L.H.; Makarov, D.V.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J. Urol. 2018, 199, 683–690. [Google Scholar] [CrossRef]
- Bekelman, J.E.; Rumble, R.B.; Chen, R.C.; Pisansky, T.M.; Finelli, A.; Feifer, A.; Nguyen, P.L.; Loblaw, D.A.; Tagawa, S.T.; Gillessen, S.; et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J. Clin. Oncol. 2018, 36, 3251–3258. [Google Scholar] [CrossRef]
- Karazindiyanoğlu, S.; Cayan, S. The effect of testosterone therapy on lower urinary tract symptoms/bladder and sexual functions in men with symptomatic late-onset hypogonadism. Aging Male 2008, 11, 146–149. [Google Scholar] [CrossRef]
- Wallace, E.M.; Pye, S.D.; Wild, S.R.; Wu, F.C. Prostate-specific antigen and prostate gland size in men receiving exogenous testosterone for male contraception. Int. J. Androl. 1993, 16, 35–40. [Google Scholar] [CrossRef]
- Hoffman, M.A.; DeWolf, W.C.; Morgentaler, A. Is low serum free testosterone a marker for high grade prostate cancer? J. Urol. 2000, 163, 824–827. [Google Scholar] [CrossRef]
- Mearini, L.; Costantini, E.; Zucchi, A.; Mearini, E.; Bini, V.; Cottini, E.; Porena, M. Testosterone levels in benign prostatic hypertrophy and prostate cancer. Urol. Int. 2008, 80, 134–140. [Google Scholar] [CrossRef]
- Kaplan, A.L.; Trinh, Q.D.; Sun, M.; Carter, S.C.; Nguyen, P.L.; Shih, Y.T.; Marks, L.S.; Hu, J.C. Testosterone replacement therapy following the diagnosis of prostate cancer: Outcomes and utilization trends. J. Sex. Med. 2014, 11, 1063–1070. [Google Scholar] [CrossRef]
- Walsh, T.J.; Shores, M.M.; Krakauer, C.A.; Forsberg, C.W.; Fox, A.E.; Moore, K.P.; Korpak, A.; Heckbert, S.R.; Zeliadt, S.B.; Kinsey, C.E.; et al. Testosterone treatment and the risk of aggressive prostate cancer in men with low testosterone levels. PLoS ONE 2018, 13, e0199194. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, L.; Leon, P.; Cancel-Tassin, G.; Audouin, M.; Staerman, F.; Rouprêt, M.; Cussenot, O. Testosterone replacement therapy (TRT) and prostate cancer: An updated systematic review with a focus on previous or active localized prostate cancer. Urol. Oncol. 2020, 38, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Calof, O.M.; Singh, A.B.; Lee, M.L.; Kenny, A.M.; Urban, R.J.; Tenover, J.L.; Bhasin, S. Adverse events associated with testosterone replacement in middle-aged and older men: A meta-analysis of randomized, placebo-controlled trials. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Gu, W.; Liu, M.; Peng, B.O.; Yao, X.; Yang, B.; Zheng, J. Efficacy and safety of testosterone replacement therapy in men with hypogonadism: A meta-analysis study of placebo-controlled trials. Exp. Ther. Med. 2016, 11, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Balsells, M.M.; Murad, M.H.; Lane, M.; Lampropulos, J.F.; Albuquerque, F.; Mullan, R.J.; Agrwal, N.; Elamin, M.B.; Gallegos-Orozco, J.F.; Wang, A.T.; et al. Clinical review 1: Adverse effects of testosterone therapy in adult men: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2010, 95, 2560–2575. [Google Scholar] [CrossRef] [Green Version]
- Kohn, T.P.; Mata, D.A.; Ramasamy, R.; Lipshultz, L.I. Effects of Testosterone Replacement Therapy on Lower Urinary Tract Symptoms: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 69, 1083–1090. [Google Scholar] [CrossRef]
- Cui, Y.; Zong, H.; Yan, H.; Zhang, Y. The effect of testosterone replacement therapy on prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2014, 17, 132–143. [Google Scholar] [CrossRef]
- Kang, D.Y.; Li, H.J. The effect of testosterone replacement therapy on prostate-specific antigen (PSA) levels in men being treated for hypogonadism: A systematic review and meta-analysis. Medicine 2015, 94, e410. [Google Scholar] [CrossRef]
- Teeling, F.; Raison, N.; Shabbir, M.; Yap, T.; Dasgupta, P.; Ahmed, K. Testosterone Therapy for High-risk Prostate Cancer Survivors: A Systematic Review and Meta-analysis. Urology 2019, 126, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Kardoust Parizi, M.; Abufaraj, M.; Fajkovic, H.; Kimura, S.; Iwata, T.; D’Andrea, D.; Karakiewicz, P.I.; Shariat, S.F. Oncological safety of testosterone replacement therapy in prostate cancer survivors after definitive local therapy: A systematic literature review and meta-analysis. Urol. Oncol. 2019, 37, 637–646. [Google Scholar] [CrossRef]
- Shi, H.; Santos, H.O.; De Souza, I.G.O.; Hoilat, G.J.; Martins, C.E.C.; Varkaneh, H.K.; Alkhwildi, J.A.; Hejji, A.T.; Almuqayyid, F.; Abu-Zaid, A. The Effect of Raloxifene Treatment on Lipid Profile in Elderly Individuals: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Clin. Ther. 2021, 43, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Al-Jubairi, N.N.; Santos, H.O.; De Souza, I.G.O.; Chen, Y. Does letrozole treatment have favorable effects on the lipid profile? A systematic review and meta-analysis of randomized clinical trials. Steroids 2021, 172, 108875. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xiong, Y.; Meng, Y.L.; Santos, H.O.; Athayde, F.L.; De Souza, I.G.O.; Yang, L. Effects of raloxifene administration on serum levels of insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 levels: A systematic review and meta-analysis of randomized controlled trials. Growth Horm. IGF Res. 2021, 60–61, 101421. [Google Scholar] [CrossRef]
- Tan, R.S.; Cook, K.R.; Reilly, W.G. High estrogen in men after injectable testosterone therapy: The low T experience. Am. J. Mens. Health 2015, 9, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Jacobson, D.J.; Rhodes, T.; Klee, G.G.; Leiber, M.M.; Jacobsen, S.J. Serum sex hormones and measures of benign prostatic hyperplasia. Prostate 2004, 61, 124–131. [Google Scholar] [CrossRef]
- Kristal, A.R.; Schenk, J.M.; Song, Y.; Arnold, K.B.; Neuhouser, M.L.; Goodman, P.J.; Lin, D.W.; Stanczyk, F.Z.; Thompson, I.M. Serum steroid and sex hormone-binding globulin concentrations and the risk of incident benign prostatic hyperplasia: Results from the prostate cancer prevention trial. Am. J. Epidemiol. 2008, 168, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.Y.; Shi, G.B.; Lam, H.M.; Hu, D.P.; Ho, S.M.; Madueke, I.C.; Kajdacsy-Balla, A.; Prins, G.S. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 2011, 152, 2150–2163. [Google Scholar] [CrossRef] [Green Version]
- Nelles, J.L.; Hu, W.Y.; Prins, G.S. Estrogen action and prostate cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Till, C.; Kristal, A.R.; Goodman, P.J.; Hsing, A.W.; Tangen, C.M.; Platz, E.A.; Stanczyk, F.Z.; Reichardt, J.K.; Tang, L.; et al. Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: A nested case-control study. Cancer Causes Control 2011, 22, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Shoskes, J.J.; Wilson, M.K.; Spinner, M.L. Pharmacology of testosterone replacement therapy preparations. Transl. Androl. Urol. 2016, 5, 834–843. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Perry, P.J.; Ellerby, M.; Murry, D.J. Population Pharmacokinetic/Pharmacodynamic Modeling of Depot Testosterone Cypionate in Healthy Male Subjects. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 259–268. [Google Scholar] [CrossRef]
- Partsch, C.J.; Weinbauer, G.F.; Fang, R.; Nieschlag, E. Injectable testosterone undecanoate has more favourable pharmacokinetics and pharmacodynamics than testosterone enanthate. Eur. J. Endocrinol. 1995, 132, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.D.; Wolfe, P.R.; Anderson, P.; Cohan, G.R.; Scarsella, A. Prospective study of topical testosterone gel (AndroGel) versus intramuscular testosterone in testosterone-deficient HIV-infected men. HIV Clin. Trials 2007, 8, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Guay, A.T.; Smith, T.M.; Offutt, L.A. Absorption of testosterone gel 1% (Testim) from three different application sites. J. Sex. Med. 2009, 6, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Jockenhovel, F. Testosterone therapy--what, when and to whom? Aging Male Off. J. Int. Soc. Study Aging Male 2004, 7, 319–324. [Google Scholar] [CrossRef]
Study | Design (Number of Studies) | Population | Route of Administration | Duration (Months) | Outcomes |
---|---|---|---|---|---|
Parizi et al., 2019 [60] | Prospective and retrospective (n = 21) | PCa men treated with TRT after definitive local therapy (n = 1084) | TD; IM; PO | 1–102 | TRT after definitive PCa therapy appears to be safe and does not increase the BCR rate |
Teeling et al., 2018 [59] | Prospective and retrospective (n = 13) | High-risk PCa survivors undergoing TRT (n = 109) | TD patch; TD gel TU IM PO Pellet | 1–189 | No increased risk of BCR |
Guo et al., 2016 [54] | RCTs (n = 16) | Men with T deficiency; comparison of TRT-treated and placebo-treated patients (n = 1921) | TE IM; TU, PO; TD gel; TU IM | 6–36 | IPSS did not change significantly in the TRT group. TRT also improved life quality, anthropometric status, and metabolic parameters |
Kohn et al., 2016 [56] | RCTs (n = 14) | TRT for men with LOH and LUTS assessed (n = 2029) | TD patch; TD gel; TE IM; TU IM; TU, PO | 3–36 | No statistical significance for IPSS from the baseline to the end of the follow-up period in the men treated with TRT compared to the placebo group |
Kang and Li, 2015 [58] | RCTs (n = 15) | Men undergoing TRT (n = 739) | TD patch; TD gel; TE IM; TU IM TU PO | 3–12 | TRT seemingly did not increase the risk of PCa |
Cui et al., 2014 [57] | RCTs (n = 22) | Men undergoing TRT (n = 2351) | TD patch; TD gel; TE IM; TU IM TU, PO | 3–36 | TRT had short-term safety and did not promote PCa development or progression |
Fernández-Balsells et al., 2010 [55] | RCTs and non-RCTs (n = 51) | Men with low or low-normal T levels and treated with any T formulation for at least three months (n = 2798) | TD patch; TD gel; TE IM; TU IM; TU, PO | 3–36 | There was no significant difference between TRT and the placebo in PSA levels and IPSS |
Calof et al., 2005 [53] | RCTs (n = 19) | Men ≥ 45 years old with low or low-normal T levels (651 subjects treated with T and 433 subjects treated with a placebo) | TU IM; TE IM; TC IM; ME IM; scrotal patch; TU, PO; TD patch; TD gel | 3–36 | TRT in older men was associated with a significantly higher risk of prostate events than the placebo (OR = 1.78; 95% CI, 1.07–2.95). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzuti, A.; Stocker, G.; Santos, H.O. Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety. Uro 2022, 2, 30-39. https://doi.org/10.3390/uro2010005
Rizzuti A, Stocker G, Santos HO. Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety. Uro. 2022; 2(1):30-39. https://doi.org/10.3390/uro2010005
Chicago/Turabian StyleRizzuti, André, Gustavo Stocker, and Heitor O. Santos. 2022. "Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety" Uro 2, no. 1: 30-39. https://doi.org/10.3390/uro2010005
APA StyleRizzuti, A., Stocker, G., & Santos, H. O. (2022). Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety. Uro, 2(1), 30-39. https://doi.org/10.3390/uro2010005