Revolutionizing Prostate Whole-Slide Image Super-Resolution: A Comparative Journey from Regression to Generative Adversarial Networks
Abstract
:1. Introduction
2. Preliminaries
- IHR(x, y) is the pixel value at the HR image at coordinates (x, y),
- ILR(xi, yj) is the pixel value at the LR image at coordinates (xi, yj),
- a, b, c, d are the interpolation coefficients, determined based on the relative positions of (x, y).
General Super-Resolution Block Diagram
- The generator aims to minimize the probability that the discriminator correctly classifies the generated data as fake:
- The generator’s update involves taking the gradient with respect to its parameters :
- The discriminator aims to maximize the probability of correctly classifying the real data and the probability of correctly classifying the generated data as fake:
- The discriminator’s update involves taking the gradient with respect to its parameters :These gradients are then used in an optimization algorithm to update the parameters of the discriminator and generator in an alternating fashion until convergence;
- The overall objective of the GAN is a min–max game:G is the generator,D is the discriminator,is the distribution of the real data, andis the distribution of the noise.
3. Related-Work
4. Methods and Materials
4.1. Super-Resolution Using Machine Learning and Deep Learning
4.2. Architecture of Super-Resolution Generative Adversarial Networks
SRGAN’s Architecture Mathematical Modeling
4.3. Dataset Details
4.4. Experimental Setup
5. Evaluation Metrics
- Peak signal-to-noise ratio (dB): The PSNR measures image quality by comparing the original image to the reconstructed image, with higher values indicating better quality and higher fidelity.I is the original image,K is the reconstructed (or compressed) image, andMAX is the maximum possible pixel value of the images.
- Structural similarity index: The SSIM goes further by considering not just pixel-level differences, but also structural aspects like image similarity, considering luminance, contrast, and structure. A higher SSIM means better similarity to the original.The SSIM is a product of three components, luminance (l), contrast (c), and structure (s), raised to the power of an exponent as shown below:Typically, is set to a smaller value, e.g., 1.
- Root-mean-squared error: The RMSE shows the average magnitude of the errors between images. The root-MSE is the square root of the MSE and is used to measure the average magnitude of the errors between the corresponding pixel values of the original (I) and reconstructed (K) images.
- Mean absolute error: The MAE evaluates the error by calculating the average absolute differences between the original and reconstructed images.
- Multi-scale structural similarity index: An extension of the SSIM, it assesses the structural similarity at multiple scales.
6. Results and Discussion
7. Conclusions
8. Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelrazek, A.; Mahmoud, A.M.; Joshi, V.B.; Habeeb, M.; Ahmed, M.E.; Ghoniem, K.; Delgado, A.; Khater, N.; Kwon, E.; Kendi, A.T. Recent Advances in Prostate Cancer (PCa) Diagnostics. Uro 2022, 2, 109–121. [Google Scholar] [CrossRef]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer 2002, 2, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Abdelrazek, A.S.; Ghoniem, K.; Ahmed, M.E.; Joshi, V.; Mahmoud, A.M.; Saeed, N.; Khater, N.; Elsharkawy, M.S.; Gamal, A.; Kwon, E.; et al. Prostate Cancer: Advances in Genetic Testing and Clinical Implications. Uro 2023, 3, 91–103. [Google Scholar] [CrossRef]
- Lang, F.; Contreras-Gerenas, M.F.; Gelléri, M.; Neumann, J.; Kröger, O.; Sadlo, F.; Berniak, K.; Marx, A.; Cremer, C.; Wagenknecht, H.A.; et al. Tackling tumour cell heterogeneity at the super-resolution level in human colorectal cancer tissue. Cancers 2021, 13, 3692. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, Z.; Wang, Y.; Colomer, A.; Oliver Moll, J.; Zhao, Z.; Naranjo, V. Wwfedcbmir: World-wide federated content-based medical image retrieval. Bioengineering 2023, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, X.; Lin, J.C.W.; Zuo, W.; Zhang, Y.; Lin, C.W. Generative adversarial networks for image super-resolution: A survey. arXiv 2022, arXiv:2204.13620. [Google Scholar]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Chang, J. Hyperspectral super-resolution via low rank tensor triple decomposition. arXiv 2023, arXiv:2306.10489. [Google Scholar] [CrossRef]
- Li, Y.; Dong, W.; Xie, X.; Shi, G.; Wu, J.; Li, X. Image super-resolution with parametric sparse model learning. IEEE Trans. Image Process. 2018, 27, 4638–4650. [Google Scholar] [CrossRef]
- Ahmad, W.; Ali, H.; Shah, Z.; Azmat, S. A new generative adversarial network for medical images super resolution. Sci. Rep. 2022, 12, 9533. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, P.; Azhar, F. A single image interpolation scheme for enhanced super resolution in bio-medical imaging. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Liu, C.Z.; Kavakli, M. Extensions of principle component analysis with applications on vision based computing. Multimed. Tools Appl. 2016, 75, 10113–10151. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B. Super-resolution restoration of multispectral images based on principal component analysis. In Proceedings of the 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 October 2014; pp. 841–846. [Google Scholar]
- Jiji, C.; Chaudhuri, S. PCA Based Generalized Interpolation for Image Super-Resolution. In Proceedings of the ICVGIP, Kolkata, India, 16–18 December 2004; pp. 139–144. [Google Scholar]
- Tai, S.C.; Huang, J.J.; Chen, P.Y. A Super-Resolution Algorithm Using Linear Regression Based on Image Self-Similarity. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 275–278. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shao, M.; Yu, L.; Li, Y. Image super-resolution reconstruction based on sparse representation and deep learning. Signal Process. Image Commun. 2020, 87, 115925. [Google Scholar] [CrossRef]
- Gavade, A.B.; Rajpurohit, V.S. S-DolLion-MSVNN: A Hybrid Model for Developing the Super-Resolution Image From the Multispectral Satellite Image. Comput. J. 2022, 65, 757–772. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, F.; Yu, H.; Chen, C. Fast single image super-resolution via self-example learning and sparse representation. IEEE Trans. Multimed. 2014, 16, 2178–2190. [Google Scholar] [CrossRef]
- El-Shafai, W.; Aly, R.; Taha, T.E.; Abd El-Samie, F.E. CNN framework for optical image super-resolution and fusion. J. Opt. 2023, 1–20. [Google Scholar]
- Wang, Z.; Liu, D.; Yang, J.; Han, W.; Huang, T. Deep networks for image super-resolution with sparse prior. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 370–378. [Google Scholar]
- Chen, Y.; Xie, Y.; Zhou, Z.; Shi, F.; Christodoulou, A.G.; Li, D. Brain MRI super resolution using 3D deep densely connected neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 739–742. [Google Scholar]
- Bychkov, D.; Turkki, R.; Haglund, C.; Linder, N.; Lundin, J. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer. In Proceedings of the Medical Imaging 2016: Digital Pathology, San Diego, CA, USA, 27 February–3 March 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9791, pp. 298–303. [Google Scholar]
- Gao, Y.; Li, H.; Dong, J.; Feng, G. A deep convolutional network for medical image super-resolution. In Proceedings of the 2017 Chinese Automation Congress, Jinan, China, 20–22 October 2017; pp. 5310–5315. [Google Scholar] [CrossRef]
- Gu, Y.; Zeng, Z.; Chen, H.; Wei, J.; Zhang, Y.; Chen, B.; Li, Y.; Qin, Y.; Xie, Q.; Jiang, Z.; et al. MedSRGAN: Medical images super-resolution using generative adversarial networks. Multimed. Tools Appl. 2020, 79, 21815–21840. [Google Scholar] [CrossRef]
- Mahapatra, D.; Bozorgtabar, B.; Garnavi, R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med Imaging Graph. 2019, 71, 30–39. [Google Scholar] [CrossRef]
- Oyelade, O.N.; Ezugwu, A.E.; Almutairi, M.S.; Saha, A.K.; Abualigah, L.; Chiroma, H. A generative adversarial network for synthetization of regions of interest based on digital mammograms. Sci. Rep. 2022, 12, 6166. [Google Scholar] [CrossRef]
- Iqbal, T.; Ali, H. Generative adversarial network for medical images (MI-GAN). J. Med Syst. 2018, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gavade, A.; Sane, P. Super resolution image reconstruction by using bicubic interpolation. In Proceedings of the National Conference on Advanced Technologies in Electrical and Electronic Systems, London, UK, 2–4 July 2014; Volume 10. [Google Scholar]
- Mukherjee, L.; Bui, H.D.; Keikhosravi, A.; Loeffler, A.; Eliceiri, K.W. Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images. J. Biomed. Opt. 2019, 24, 126003. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Khaledyan, D.; Amirany, A.; Jafari, K.; Moaiyeri, M.H.; Khuzani, A.Z.; Mashhadi, N. Low-cost implementation of bilinear and bicubic image interpolation for real-time image super-resolution. In Proceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Bustomi, M.A. Testing of Image Resolution Enhancement Techniques Using Bi-cubic Spatial Domain Interpolation. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1417, p. 012028. [Google Scholar]
- Cui, J.; Wang, Y.; Huang, J.; Tan, T.; Sun, Z. An iris image synthesis method based on PCA and super-resolution. In Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR, Cambridge, UK, 23–26 August 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 471–474. [Google Scholar]
- Silva-Rodríguez, J. SICAPv2—Prostate Whole Slide Images with Gleason Grades Annotations. Mendeley Data 2020. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, Q. The evolving Gleason grading system. Chin. J. Cancer Res. Chung-Kuo Yen Cheng Yen Chiu 2016, 28, 58–64. [Google Scholar]
- Neary-Zajiczek, L.; Beresna, L.; Razavi, B.; Pawar, V.; Shaw, M.; Stoyanov, D. Minimum resolution requirements of digital pathology images for accurate classification. Med. Image Anal. 2023, 89, 102891. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z. Quality assessment of image super-resolution: Balancing deterministic and statistical fidelity. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 934–942. [Google Scholar]
- Van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Wang, L.; Yoon, K.J. Semi-supervised student-teacher learning for single image super-resolution. Pattern Recognit. 2022, 121, 108206. [Google Scholar] [CrossRef]
- Arvaniti, E.; Fricker, K.S.; Moret, M.; Rupp, N.; Hermanns, T.; Fankhauser, C.; Wey, N.; Wild, P.J.; Rueschoff, J.H.; Claassen, M. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 2018, 8, 12054. [Google Scholar] [CrossRef]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef]
Models & Authors | PSNR | RMSE | SSIM | MSSIM | SNR | Dataset or Images |
---|---|---|---|---|---|---|
Bicubic Interpolation [30] | 27.32 | - | - | - | - | Lenna image |
43.3 | - | - | - | - | Esophagus CT image | |
Deep Convolutional Network [25] | 42.1 | - | - | - | - | Nasal CT image |
38.9 | - | - | - | - | Pelvic CT image | |
Linear Regression [16] | 27.67 | - | - | - | - | Multi-spectral image dataset |
Residual CNN [14] | 42.76 | - | 0.9953 | - | - | T2w MRI brain |
26.59 | 15.64 | 0.98 | 0.95 | 24.36 | Breast WSI | |
SR-RCNN 1 [31] | 19.75 | 11.60 | 0.98 | 0.97 | 28.31 | Kidney WSI |
24.79 | 20.32 | 0.96 | 0.93 | 22.07 | Pancreas WSI | |
32.17 | - | 0.9350 | - | - | Urban100 “img082” | |
Deep Recursive Convolutional Neural Network [32] | 24.36 | - | 0.7399 | - | - | B100 “134035” |
27.66 | - | 0.9608 | - | - | Set14 “ppt3” |
SR Models | PSNR (↑) | SSIM (↑) | RMSE (↓) | MAE (↓) | MSSIM (↑) |
---|---|---|---|---|---|
Regression | 23.56 | 0.78 | 0.048 | 0.034 | 0.86 |
Sparse Learning | 24.81 | 0.80 | 0.044 | 0.32 | 0.88 |
PCA | 22.73 | 0.75 | 0.054 | 0.038 | 0.82 |
Bicubic Interpolation | 21.92 | 0.70 | 0.060 | 0.045 | 0.78 |
MVSNN | 25.36 | 0.82 | 0.039 | 0.029 | 0.90 |
SR-CNN | 26.03 | 0.83 | 0.036 | 0.027 | 0.89 |
AE | 26.18 | 0.83 | 0.034 | 0.027 | 0.90 |
SRGAN | 26.47 | 0.85 | 0.035 | 0.026 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavade, A.B.; Gadad, K.A.; Gavade, P.A.; Nerli, R.B.; Kanwal, N. Revolutionizing Prostate Whole-Slide Image Super-Resolution: A Comparative Journey from Regression to Generative Adversarial Networks. Uro 2024, 4, 89-103. https://doi.org/10.3390/uro4030007
Gavade AB, Gadad KA, Gavade PA, Nerli RB, Kanwal N. Revolutionizing Prostate Whole-Slide Image Super-Resolution: A Comparative Journey from Regression to Generative Adversarial Networks. Uro. 2024; 4(3):89-103. https://doi.org/10.3390/uro4030007
Chicago/Turabian StyleGavade, Anil B., Kartik A. Gadad, Priyanka A. Gavade, Rajendra B. Nerli, and Neel Kanwal. 2024. "Revolutionizing Prostate Whole-Slide Image Super-Resolution: A Comparative Journey from Regression to Generative Adversarial Networks" Uro 4, no. 3: 89-103. https://doi.org/10.3390/uro4030007
APA StyleGavade, A. B., Gadad, K. A., Gavade, P. A., Nerli, R. B., & Kanwal, N. (2024). Revolutionizing Prostate Whole-Slide Image Super-Resolution: A Comparative Journey from Regression to Generative Adversarial Networks. Uro, 4(3), 89-103. https://doi.org/10.3390/uro4030007