Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.1.1. Analytical Standards
- (−)-Epinephrine (E, ≥99%, Sigma®, St. Louis, Missouri, USA), (−)-Norepinephrine (NE, ≥98%, Sigma®, USA), L-Phenylalanine (Phe, ≥99%, BioUltra, Sigma®, Tokyo, Japan), L-Tryptophan (Tryp, ≥98% HPLC, Sigma-Aldrich®, Shanghai, China), L-Tyrosine (Tyr, ≥98% HPLC, Sigma-Aldrich®, Darmstadt, Germany), L-Histidine.HCl (His, ≥98% HPLC, Sigma®, St. Louis, Missouri, USA), L-Lysine (Lys, ≥95% HPLC, analytical standard, Sigma-Aldrich®, Auckland, Switzerland) and L-Ascorbic acid (Asc, PHR, certified reference material, Sigma-Aldrich®, St. Louis, Missouri, USA).
- Analytical solvents, methanol and acetonitrile solvents for UHPLC-MS grade and Formic acid for LC-MS grade, were supplied from Carlo Erba® Reagents S.A.S, Wadreuil, France.
- Ultrapure water was supplied from a Milli-Q®, USA ultrapure water system equipped at the end of assembly line with a Milli-Q® Reference and a Q-POD® element.
2.1.2. Standard Solution Preparation
2.2. Biofluid Sampling
2.2.1. Blood Collection
2.2.2. Sweat Collection
Sweat Patch Sampling
Sweat Vials Sampling
2.3. Sample Preparation for Analysis
2.3.1. Vials
2.3.2. Patches
2.3.3. Extraction for LC-MS/MS Analysis
2.4. Instrumentation
2.5. Chromatographic and Mass-Spectrometry Conditions
2.6. Validation of the Analytical Procedure
3. Results and Discussion
3.1. Optimisation of Analytical Detection Methodology
3.2. Identification of Potential Biomarkers in Sweat
- (a)
- Neurotransmitters (NTs): Acetylcholine (Ach); biological amines and their metabolites, Dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC, DA metabolite), Homovanillic acid (HVA, DA metabolite), 3-Methoxytyramine (3-MT, DA metabolite), Epinephrine (E), Norepinephrine (NE), Serotonin (5-HT) and 5-Hydroxyindol-3-acetic acid (5-HIAA, 5-HT metabolite); Amino acids, Glutamic Acid (Glu); Purines, Adenosine (Ade).
- (b)
- Other identified molecules: Amino acids precursors of biogenic amines, L-Phenylalanine (Phe), L-Tyrosine (Tyr) and L-Tryptophan (Trp); Amino acids, Creatine (Crea), L-Glutamine (Gln), L-Histidine (His), L-Isoleucine (Ile), L-Leucine (Leu) and L-Lysine (Lys); Carboxylic acids, Ascorbic Acid (Asc) and Lactic Acid (Lacta); Carbohydrates, D-Glucose (Gluc); Breakdown products, Creatinine (Creat); Steroid hormones, Cortisol (or hydrocortisone) (Cor) and Cortisone (Cort).
- -
- low NL signal: DA, DOPAC, HVA and NE;
- -
- medium NL signal: Ach, E, 5-HT, 5-HIAA, Ade, Asc and Creat;
- -
- high NL signal: 3-MT, Glu, Phe, Trp, Tyr, Crea, Gln, His, Ile, Leu, Lys, Lacta, Gluc, Cor and Cort.
3.3. Sampling Sweat Performance
3.4. Preliminary Assessment of Level Variations of Selected Molecules in Blood and Sweat
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques, A.H.; Silverman, M.N.; Sternberg, E.M. Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation 2010, 17, 205–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; et al. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front. Mol. Biosci. 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Cao, T.; Li, N.; Fang, P.; Xu, P.; Wu, X.; Zhang, B.; Xiang, D. Quantitative monitoring of a panel of stress-induced biomarkers in human plasma by liquid chromatography-tandem mass spectrometry: An application in a comparative study between depressive patients and healthy subjects. Anal. Bioanal. Chem. 2019, 411, 5765–5777. [Google Scholar] [CrossRef] [PubMed]
- Pilon, S.; Holloway, A.C.; Thomson, E.M. Metabolic, stress, and inflammatory biomarker responses to glucose administration in Fischer-344 rats: Intraperitoneal vs. oral delivery. J. Pharmacol. Toxicol. Methods 2018, 90, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Picard, R.W. Automating the Recognition of Stress and Emotion: From Lab to Real-World Impact. IEEE Multimed. 2016, 23, 3–7. [Google Scholar] [CrossRef]
- Stress at the Workplace. Available online: https://www.who.int/occupational_health/topics/stressatwp/en/ (accessed on 15 January 2022).
- Singh, A.; Kaushik, A.; Kumar, R.; Nair, M.; Bhansali, S. Electrochemical sensing of cortisol: A recent update. Appl. Biochem. Biotechnol. 2014, 174, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Cano-Lopez, I.; Gonzalez-Bono, E. Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci. Biobehav. Rev. 2019, 103, 216–229. [Google Scholar] [CrossRef]
- Zamkah, A.; Hui, T.; Andrews, S.; Dey, N.; Shi, F.; Sherratt, R.S. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Biosensensors 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Steckl, A.J.; Ray, P. Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection. ACS Sens. 2018, 3, 2025–2044. [Google Scholar] [CrossRef]
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun. 2007, 21, 901–912. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Why stress is bad for your brain. Science 1996, 273, 749–750. [Google Scholar] [CrossRef] [PubMed]
- Chaouloff, F.; Berton, O.; Mormede, P. Serotonin and stress. Neuropsychopharmacology 1999, 21, S28–S32. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of Mental Stress on Heart Rate and Heart Rate Variability. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2009; Volume 22, pp. 1366–1369. [Google Scholar]
- Heraclides, A.M.; Chandola, T.; Witte, D.R.; Brunner, E.J. Work Stress, Obesity and the Risk of Type 2 Diabetes: Gender-Specific Bidirectional Effect in the Whitehall II Study. Obesity 2012, 20, 428–433. [Google Scholar] [CrossRef] [PubMed]
- McCowen, K.C.; Malhotra, A.; Bistrian, B.R. Stress-induced hyperglycemia. Crit. Care Clin. 2001, 17, 107–124. [Google Scholar] [CrossRef]
- Ray, P.; Steckl, A.J. Label-Free Optical Detection of Multiple Biomarkers in Sweat, Plasma, Urine, and Saliva. ACS Sens. 2019, 4, 1346–1357. [Google Scholar] [CrossRef]
- Griffiths, H.R.; Moller, L.; Bartosz, G.; Bast, A.; Bertoni-Freddari, C.; Collins, A.; Cooke, M.; Coolen, S.; Haenen, G.; Hoberg, A.M.; et al. Biomarkers. Mol. Asp. Med. 2002, 23, 101–208. [Google Scholar] [CrossRef]
- Dadar, M.; Dhama, K.; Iqbal, H.M.N.; Munjal, A.; Khandia, R.; Karthik, K.; Sachan, S.; Latheef, S.K.; Samad, H.A.; Joshi, S.K. Molecular Signatures of Biomarkers in Cancer Development, Diagnosis, and its Prognostic Accuracy. Curr. Biomark. 2016, 6, 89–96. [Google Scholar] [CrossRef]
- Abbas, M.; Habib, M.; Naveed, M.; Karthik, K.; Dhama, K.; Shi, M.; Dingding, C. The relevance of gastric cancer biomarkers in prognosis and pre- and post-chemotherapy in clinical practice. Biomed. Pharmacother. 2017, 95, 1082–1090. [Google Scholar] [CrossRef]
- Prajapati, B.M.; Gupta, J.P.; Pandey, D.P.; Parmar, G.A.; Chaudhari, J.D. Molecular markers for resistance against infectious diseases of economic importance. Vet. World 2017, 10, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Selleck, M.J.; Senthil, M.; Wall, N.R. Making Meaningful Clinical Use of Biomarkers. Biomark. Insights 2017, 12, 1177271917715236. [Google Scholar] [CrossRef] [Green Version]
- Ewert, A.; Chang, Y. Levels of Nature and Stress Response. Behav. Sci. 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampa, M.; Sarbu, M.I.; Mitran, M.I.; Mitran, C.I.; Matei, C.; Georgescu, S.R. The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. Dis. Markers 2018, 2018, 5823684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Santiago, M.; Priego-Capote, F.; Turck, N.; Robin, X.; Jurado-Gamez, B.; Sanchez, J.C.; Luque de Castro, M.D. Human sweat metabolomics for lung cancer screening. Anal. Bioanal. Chem. 2015, 407, 5381–5392. [Google Scholar] [CrossRef]
- Brasier, N.; Eckstein, J. Sweat as a Source of Next-Generation Digital Biomarkers. Digit. Biomark. 2019, 3, 155–165. [Google Scholar] [CrossRef]
- Alvarez-Sanchez, B.; Priego-Capote, F.; de Castro, M.D.L. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC Trends Anal. Chem. 2010, 29, 111–119. [Google Scholar] [CrossRef]
- Causon, T.J.; Hann, S. Review of sample preparation strategies for MS-based metabolomic studies in industrial biotechnology. Anal. Chim. Acta 2016, 938, 18–32. [Google Scholar] [CrossRef]
- Jadoon, S.; Karim, S.; Akram, M.R.; Kalsoom Khan, A.; Zia, M.A.; Siddiqi, A.R.; Murtaza, G. Recent developments in sweat analysis and its applications. Int. J. Anal. Chem. 2015, 2015, 164974. [Google Scholar] [CrossRef]
- Mena-Bravo, A.; Luque de Castro, M.D. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharm. Biomed. Anal. 2014, 90, 139–147. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Castillo-Peinado, L.S.; Calderon-Santiago, M.; Luque de Castro, M.D.; Priego-Capote, F. Dry sweat as sample for metabolomics analysis. Talanta 2020, 208, 120428. [Google Scholar] [CrossRef]
- Lee, J.B.; Kim, J.H.; Murota, H. Perspiration Functions in Different Ethnic, Age, and Sex Populations: Modification of Sudomotor Function. Curr. Probl. Dermatol. 2016, 51, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Hladek, M.D.; Szanton, S.L.; Cho, Y.E.; Lai, C.; Sacko, C.; Roberts, L.; Gill, J. Using sweat to measure cytokines in older adults compared to younger adults: A pilot study. J. Immunol. Methods 2018, 454, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: A review. J. R. Soc. Interface 2019, 16, 20190217. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, T.; Wang, D.; Zhang, X. The role of sampling in wearable sweat sensors. Talanta 2020, 212, 120801. [Google Scholar] [CrossRef]
- O’Neil, G.D. Toward single-step production of functional electrochemical devices using 3D printing: Progress, challenges, and opportunities. Curr. Opin. Electrochem. 2020, 20, 60–65. [Google Scholar] [CrossRef]
- Hannah, S.; Blair, E.; Corrigan, D.K. Developments in microscale and nanoscale sensors for biomedical sensing. Curr. Opin. Electrochem. 2020, 23, 7–15. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, C. Wearable electrochemical sensors for noninvasive monitoring of health—A perspective. Curr. Opin. Electrochem. 2020, 23, 42–46. [Google Scholar] [CrossRef]
- Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable Performance Devices in Sports Medicine. Sports Health 2016, 8, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Ely, M.R.; Ely, B.R.; Chinevere, T.D.; Lacher, C.P.; Lukaski, H.C.; Cheuvront, S.N. Evaluation of the Megaduct sweat collector for mineral analysis. Physiol. Meas. 2012, 33, 385–394. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable Sensors for Biochemical Sweat Analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant. Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; Queiroz, J.A.; Lopez-Rivadulla, M. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal. Bioanal. Chem. 2011, 400, 1665–1690. [Google Scholar] [CrossRef] [PubMed]
- Kintz, P.; Samyn, N. Unconventional samples and alternative matrices. In Forensic Science—Handbook of Analytical Separations; Bogusz, M.J., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2000; pp. 459–488. [Google Scholar]
- Huestis, M.A.; Oyler, J.M.; Cone, E.J.; Wstadik, A.T.; Schoendorfer, D.; Joseph, R.E. Sweat testing for cocaine, codeine and metabolites by gas chromatography—Mass spectrometry. J. Chromatogr. B 1999, 733, 247–264. [Google Scholar] [CrossRef]
- Harshman, S.W.; Pitsch, R.L.; Smith, Z.K.; O’Connor, M.L.; Geier, B.A.; Qualley, A.V.; Schaeublin, N.M.; Fischer, M.V.; Eckerle, J.J.; Strang, A.J.; et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: A pilot investigation. PLoS ONE 2018, 13, e0203133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harshman, S.W.; Pitsch, R.L.; Schaeublin, N.M.; Smith, Z.K.; Strayer, K.E.; Phelps, M.S.; Qualley, A.V.; Cowan, D.W.; Rose, S.D.; O’Connor, M.L.; et al. Metabolomic stability of exercise-induced sweat. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1126, 121763. [Google Scholar] [CrossRef]
- Harshman, S.W.; Strayer, K.E.; Davidson, C.N.; Pitsch, R.L.; Narayanan, L.; Scott, A.M.; Schaeublin, N.M.; Wiens, T.L.; Phelps, M.S.; O’Connor, M.L.; et al. Rate normalization for sweat metabolomics biomarker discovery. Talanta 2021, 223, 121797. [Google Scholar] [CrossRef]
- Baker, L.B. Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability. Sports Med. 2017, 47, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Accurso, F.; Clancy, J.P. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc. Am. Thorac. Soc. 2007, 4, 387–398. [Google Scholar] [CrossRef]
- Oncescu, V.; O’Dell, D.; Erickson, D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 2013, 13, 3232–3238. [Google Scholar] [CrossRef]
- LeGrys, V.A. Sweat testing for the diagnosis of cystic fibrosis: Practical considerations. J. Pediatr. 1996, 129, 892–897. [Google Scholar] [CrossRef]
- Heeley, M.E.; Woolf, D.A.; Heeley, A.F. Indirect measurements of sweat electrolyte concentration in the laboratory diagnosis of cystic fibrosis. Arch. Dis. Child. 2000, 82, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, M.; Lands, L.C. Sweat-testing: A review of current technical requirements. Pediatr. Pulmonol. 2005, 39, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for the Performance of the Sweat Test for the Investigation of Cystic Fibrosis in the UK. Available online: http://www.exeterlaboratory.com/images/sweat-guideline-v2-1.pdf (accessed on 12 April 2022).
- Schneider, S.; Ait, M.B.Z.; Schummer, C.; Lemmer, P.; Yegles, M.; Appenzeller, B.; Wennig, R. Determination of fentanyl in sweat and hair of a patient using transdermal patches. J. Anal. Toxicol. 2008, 32, 260–264. [Google Scholar] [CrossRef]
- Dziedzic, C.E.; Ross, M.L.; Slater, G.J.; Burke, L.M. Variability of measurements of sweat sodium using the regional absorbent-patch method. Int. J. Sports Physiol. Perform. 2014, 9, 832–838. [Google Scholar] [CrossRef]
- Baker, L.B.; Stofan, J.R.; Hamilton, A.A.; Horswill, C.A. Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. J. Appl. Physiol. 2009, 107, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.J.; Moura, J.G.M.; Noronha, J.P.; Branco, L.C.; Cordas, C.M. Screening of potential stress biomarkers in sweat associated with sports training. Sports Med.-Open 2021, 7, 8. [Google Scholar] [CrossRef]
- 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (Text with EEA Relevance) (Notified under Document Number C(2002) 3044)—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en (accessed on 4 November 2020).
- MacArthur, R.; Von Holst, C. A protocol for the validation of qualitative methods of detection. Anal. Methods 2012, 4, 2744–2754. [Google Scholar] [CrossRef]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Windsor, UK, 2014; ISBN 9789187461590. [Google Scholar]
- General Requirements for the Competence of Testing and calibration Laboratories; ISO/IEC 17025:2017; ISO: Geneva, Switzerland, 2017.
- Hussain, J.N.; Mantri, N.; Cohen, M.M. Working up a good sweat—The challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev. 2017, 38, 13–34. [Google Scholar]
- Monti, J.M.; Jantos, H. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog. Brain Res. 2008, 172, 625–646. [Google Scholar] [CrossRef]
- Monti, J.M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 2011, 15, 269–281. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol. Res. 2017, 50, e6432. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.L.; Christopher, M.S.; Bowen, S. Changes in Facets of Mindfulness Predict Stress and Anger Outcomes for Police Officers. Mindfulness 2016, 7, 851–858. [Google Scholar] [CrossRef]
LC | |
---|---|
UHPLC pre-column UHPLC column | Security GuardTM Ultra Holder (AJO-9000 Phenomenex®, Germany) AccuroreTM RP-MS Column (2.6 µm, 150 × 2.1 mm, Thermo Fisher Scientific) |
Column temperature | 25 °C |
Flow rate | 0.25 mL min−1 |
Mobile phase | (A) H2O: 0.1% Formic acid (V/V) (B) Acetonitrile Equilibration B: 15% (5 min) Elution B: 0–1 min (15–80%); 1–2 min (80%); 2–6 min (80–90%); 6–7 min (90%); 7–7.5 min (90–50%); 7.5–8 min (50–15%); 8–20 min (15%) |
Injection volume | 10 µL |
MS/MS | |
Ionisation Source Ion-spray voltage Vaporiser temperature Capillary temperature | ESI positive and negative Positive (3500 V) and Negative (2500 V) 320 °C 325 °C |
Biomarker | RT | ESI Mode | Precursor Ion (m/z) | Fragment Ions (m/z) | Signal | Collision Energy (eV) |
---|---|---|---|---|---|---|
Major NTs | ||||||
Ach | 1.59 | + | 146 | 60/87 | 103 | 10/19 |
Biological amines and metabolites | ||||||
DA | 1.59 | + | 154 | 91/137 | 102 | 4 |
DOPAC (DA Met) | 1.07 | - | 167 | 122/123/149 | 102 | 10 |
3-MT (DA Met) | 1.6 | + | 168 | 119/121/151 | 104 | 10 |
HVA (DA Met) | 1.61 | - | 181 | 122/137 | 102 | 10 |
E | 1.61 | + | 184.1 | 106/166 | 103 | 12/21 |
NE | 4.23 | + | 170 | 107/135 | 102 | 24/15 |
5-HT | 1.27 | + | 177 | 115/160 | 103 | 4 |
5-HIAA (5-HT Met) | 1.6 | - | 190 | 146/172 | 103 | 13 |
Amino acids | ||||||
Glu | 1.57 | + | 148 | 84/130 | 105 | 10 |
Purines | ||||||
Ade | 1.59 | + | 268 | 136/170 | 103 | 12 |
Other biomarkers | ||||||
Amino acids precursors of biological amines | ||||||
Phe | 1.6 | + | 166.1 | 77/103/120/149 | 107 | 10 |
Trp | 2.02 | + | 205.2 | 118/144/146/159/188 | 106 | 10 |
Tyr | 1.59 | + | 182 | 105/119/123/136/165 | 106 | 10 |
Amino acids | ||||||
Crea | 1.59 | + | 132.1 | 43.3/90.2 | 104 | 10 |
Gln | 1.32 | + | 147 | 84/85/103/121/130 | 105 | 10 |
His | 1.32 | + | 156 | 56/83/93/95/110 | 105 | 10 |
Ile | 1.59 | + | 132 | 69/86.2/115.2 | 105 | 10 |
Leu | 1.59 | + | 132.1 | 86/115.3 | 107 | 10 |
Lys | 1.05 | + | 147.2 | 56/84/130 | 105 | 10 |
Carboxylic acids | ||||||
Asc | 1.99 | - | 175 | 87/115 | 103 | 23/15 |
Lacta | 1.58 | - | 89 | 43/87 | 106 | 10 |
Carbohydrates | ||||||
Gluc | 1.58 | - | 179 | 59/71/89 | 105 | 10 |
Breakdown product | ||||||
Creat | 1.31 | + | 114 | 44.3/86 | 103 | 10 |
Steroid hormones | ||||||
Cor | 1.59 | + | 363.1 | 121/309/327 | 104 | 10 |
Cort | 1.6 | + | 361 | 163/343 | 104 | 10 |
Biofluid | Blood | Sweat |
---|---|---|
Physical Condition | Variation from Rest to Exercise | Variation from Rest to Exercise |
Major NTs | ||
Biological amines and metabolites | ||
DA | ↑ | - |
DOPAC (DA Met) | - | ↑ |
3-MT (DA Met) | - | ↑ |
HVA (DA Met) | - | ↑ |
NE | ↑ | - |
5-HT | ↑ | - |
5-HIAA (5-HT Met) | - | - |
Other biomarkers | ||
Amino-acid precursors of biogenic amines | ||
Phe | ↑ | ↑ |
Tryp | ↑ | ↑ |
Tyr | ↑ | ↑ |
Breakdown product | ||
Creat | ↑ | - |
Steroid hormones | ||
Cor | ↓ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, M.J.; Moura, J.J.G.; Noronha, J.P.; Branco, L.C.; Samhan-Arias, A.; Sousa, J.P.; Rouco, C.; Cordas, C.M. Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. Analytica 2022, 3, 178-194. https://doi.org/10.3390/analytica3020013
Nunes MJ, Moura JJG, Noronha JP, Branco LC, Samhan-Arias A, Sousa JP, Rouco C, Cordas CM. Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. Analytica. 2022; 3(2):178-194. https://doi.org/10.3390/analytica3020013
Chicago/Turabian StyleNunes, Maria João, José J. G. Moura, João Paulo Noronha, Luís Cobra Branco, Alejandro Samhan-Arias, João P. Sousa, Carlos Rouco, and Cristina M. Cordas. 2022. "Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection" Analytica 3, no. 2: 178-194. https://doi.org/10.3390/analytica3020013
APA StyleNunes, M. J., Moura, J. J. G., Noronha, J. P., Branco, L. C., Samhan-Arias, A., Sousa, J. P., Rouco, C., & Cordas, C. M. (2022). Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. Analytica, 3(2), 178-194. https://doi.org/10.3390/analytica3020013