Synthesis of Amidines and Its Application to Pyrimidouracil Synthesis †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
5. Experimental
- (a)
- Procedure for the preparation of N-benzylbenzamidine from benzonitrile and benzylamine.
- (b)
- General procedure for the synthesis of N-uracil amidine derivatives
- (c)
- Procedure for PhI(OAc)2-mediated oxidative insertion of toluene into N-Uracil Amidines toward the synthesis of pyrimidouracils
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aly, A.A.; Nour-El-Din, A.M. Functionality of amidines and amidrazones. ARKIVOC 2008, 153–194. [Google Scholar] [CrossRef]
- Dunn, P.J. Comprehensive Organic Functional Group Transformations II; Alan, R., Katritzky, R.J.K.T., Eds.; Elsevier: New York, NY, USA, 2005; Volume 5, p. 655. [Google Scholar]
- Drugs.com: Pharmaceutical Sales 2010. Available online: http://www.drugs.com/top200.html (accessed on 24 May 2012).
- Clement, B.; Immel, M.; Raether, W. Metabolic N-hydroxylation of diminazine in vitro. Arzneim. -Forsch. 1992, 42, 1497–1504. [Google Scholar]
- Chen, X.M.; Orser, B.A.; MacDonald, J.F. Design and screening of ASIC inhibitors based on aromatic diamidines for combating neurological disorders. Eur. J. Pharmacol. 2010, 648, 15–23. [Google Scholar] [CrossRef]
- Ojo, B.; Dunbar, P.G.; Durant, G.J.; Nagy, P.I.; Huzl, J.J.; Periyasamy, S.; Ngur, D.O.; ElAssadi, A.A.; Hoss, W.P.; Messer, W.S. Synthesis and biochemical activity of novel amidine derivatives as m1 muscarinic receptor agonists. Bioorg. Med. Chem. 1996, 4, 1604–1615. [Google Scholar] [CrossRef]
- Kotthaus, J.; Steinmetzer, T.; van de Locht, A.; Clement, B. Analysis of highly potent amidine containing inhibitors of serine proteases and their N-hydroxylated prodrugs (amidoximes). J. Enzym. Inhib. Med. Ch. 2011, 26, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kort, M.E.; Drizin, I.; Gregg, R.J.; Scanio, M.J.C.; Shi, L.; Gross, M.F.; Atkinson, R.N.; Johnson, M.S.; Pacofsky, G.J.; Thomas, J.B.; et al. Discovery and Biological Evaluation of 5-Aryl-2-furfuramides, Potent and Selective Blockers of the Nav1.8 Sodium Channel with Efficacy in Models of Neuropathic and Inflammatory Pain. J. Med. Chem. 2008, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Renton, P.; Green, B.; Maddaford, S.; Rakhit, S.; Andrews, J.S. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity. ACS Med. Chem. Lett. 2012, 3, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Annedi, S.C.; Ramnauth, J.; Maddaford, S.P.; Renton, P.; Rakhit, S.; Mladenova, G.; Dove, P.; Silverman, S.; Andrews, J.S.; Felice, M.D.; et al. Discovery of N-(3-(1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-6-yl) thiophene-2-carboximidamide as a Selective Inhibitor of Human Neuronal Nitric Oxide Synthase (nNOS) for the Treatment of Pain. J. Med. Chem. 2011, 54, 7408–7416. [Google Scholar] [CrossRef]
- Barker, J.; Kilner, M. The coordination chemistry of the amidine ligand. Coord. Chem. Rev. 1994, 133, 219–300. [Google Scholar] [CrossRef]
- Oakley, S.A.; Soria, D.B.; Coles, M.P.; Hitchcock, P.B. Structural diversity in the coordination of amidines and guanidines to monovalent metal halides. Dalton Trans. 2004, 537–546. [Google Scholar] [CrossRef]
- Desset, S.L.; Cole-Hamilton, D.J. Carbon Dioxide Induced Phase Switching for Homogeneous-Catalyst Recycling. Angew. Chem. Int. Ed. 2009, 48, 1472–1474. [Google Scholar] [CrossRef]
- Rauws, T.R.M.; Maes, B.U.W. Transition metal-catalyzed N-arylations of amidines and guanidines. Chem. Soc. Rev. 2012, 41, 2463–2497. [Google Scholar] [CrossRef] [PubMed]
- Kuethe, J.T.; Childers, K.G.; Humphrey, G.R.; Journet, M.; Peng, Z. A Rapid, Large-Scale Synthesis of a Potent Cholecystokinin (CCK) 1R Receptor Agonist. Org. Process Res. Dev. 2008, 12, 1201–1208. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Wang, Y.; Zhu, Q. Synthesis of benzimidazoles by PIDA-promoted direct C(sp2)-H imidation of N-arylamidines. Chem. Eur. J. 2012, 18, 13964–13967. [Google Scholar] [CrossRef]
- Brasche, G.; Buchwald, S.L. C–H Functionalization/C–N Bond Formation: Copper-Catalyzed Synthesis of Benzimidazoles from Amidines. Angew. Chem., Int. Ed. 2008, 47, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Malakar, C.C.; Baskakova, A.; Conrad, J.; Beifuss, U. Copper-Catalyzed Synthesis of Quinazolines in Water Starting from o-Bromobenzylbromides and Benzamidines. Chem. Eur. J. 2012, 29, 8882–8885. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wang, Y.; Peng, J.L.; Zhu, Q. Synthesis of Quinazolin-4(3H)-ones via Pd(II)-Catalyzed Intramolecular C(sp2)–H Carboxamidation of N-arylamidines. J. Org. Chem. 2011, 76, 6362–6366. [Google Scholar] [CrossRef]
- Anderson, E.D.; Boger, D.L. Scope of the Inverse Electron Demand Diels–Alder Reactions of 1,2,3-Triazine. Org. Lett. 2011, 13, 2492–2494. [Google Scholar] [CrossRef]
- Castanedo, G.M.; Seng, P.S.; Blaquiere, N.; Trapp, S.; Staben, S.T. Rapid Synthesis of 1,3,5-Substituted 1,2,4-Triazoles from Carboxylic Acids, Amidines, and Hydrazines. J. Org. Chem. 2011, 76, 1177–1179. [Google Scholar] [CrossRef]
- Grivas, J.C.; Taurins, A. Further studies on the reaction between halogen-substituted nitriles and amines. Can. J. Chem. 1961, 39, 761–764. [Google Scholar] [CrossRef]
- Bower, J.D.; Ramage, G.R. Heterocyclic systems related to pyrrocoline. Part II. The preparation of polyazaindenes by dehydrogenative cyclisations. J. Chem. Soc. 1957, 4506–4510. [Google Scholar] [CrossRef]
- Meder, M.; Galka, C.H.; Gade, L.H. Bis(2-pyridylimino)isoindole (BPI) Ligands with Novel Linker Units: Synthesis and Characterization of Their Palladium and Platinum Complexes. Monatshefte fur Chemie 2005, 136, 1693–1706. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.; Shen, Q. Samarium diiodide promoted synthesis of N,N′-disubstituted amidines. Tetrahedron Lett. 2002, 43, 1867–1869. [Google Scholar] [CrossRef]
- Forsberg, J.H.; Spaziano, V.T.; Balasubramanian, T.M. Use of lanthanide(III) ions as catalysts for the reactions of amines with nitriles. J. Org. Chem. 1987, 52, 1017–1021. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Cai, T.; Shen, Q. Addition of Amines to Nitriles Catalyzed by Ytterbium Amides: An Efficient One-Step Synthesis of Monosubstituted N-Arylamidines. Org. Lett. 2008, 10, 445–448. [Google Scholar] [CrossRef]
- Gielen, H.; Alonso-Alija, C.; Hendrix, M.; Niewohner, U.; Schauss, D. A novel approach to amidines from esters. Tetrahedron Lett. 2002, 43, 419–421. [Google Scholar] [CrossRef]
- Rousselet, G.; Capdevielle, P.; Maumy, M. Copper(I)-induced addition of amines to unactivated nitriles: The first general one-step synthesis of alkyl amidines. Tetrahedron Lett. 1993, 34, 6395–6398. [Google Scholar] [CrossRef]
- DeKorver, K.A.; Johnson, W.L.; Zhang, Y.; Hsung, R.P.; Dia, H.F.; Deng, J.; Lohse, A.G.; Zhang, Y.S. N-Allyl-N-sulfonyl Ynamides as Synthetic Precursors to Amidines and Vinylogous Amidines. An Unexpected N-to-C 1,3-Sulfonyl Shift in Nitrile Synthesis. J. Org. Chem. 2011, 76, 5092–5103. [Google Scholar] [CrossRef]
- Savmarker, J.; Rydfjord, J.; Gising, J.; Odell, L.R.; Larhed, M. Direct Palladium(II)-Catalyzed Synthesis of Arylamidines from Aryltrifluoroborates. Org. Lett. 2012, 14, 2394–2397. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Y.; Wang, Z.; Orru, R.V.A.; Maes, B.U.W.; Wu, X.-F. Palladium-Catalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions. Chem. Eur. J. 2016, 22, 7743–7746. [Google Scholar] [CrossRef]
- McGowan, M.A.; McAvoy, C.Z.; Buchwald, S.L. Palladium-Catalyzed N-Monoarylation of Amidines and a One-Pot Synthesis of Quinazoline Derivatives. Org. Lett. 2012, 14, 3800–3803. [Google Scholar] [CrossRef] [PubMed]
- Saluste, C.G.; Crumpler, S.; Furber, M.; Whitby, R.J. Palladium catalysed synthesis of cyclic amidines and imidates. Tetrahedron Lett. 2004, 45, 6995–6996. [Google Scholar] [CrossRef]
- Sheng, J.; Chao, B.; Chen, H.; Hu, Y. Synthesis of Chromeno[2,3-d]imidazol-9(1H)-ones via Tandem Reactions of 3-Iodochromones with Amidines Involving Copper-Catalyzed C–H Functionalization and C–O Bond Formation. Org Lett. 2013, 15, 4508–4511. [Google Scholar] [CrossRef]
- Chen, H.; Sanjaya, S.; Wang, Y.-F.; Chiba, S. Copper-Catalyzed Aliphatic C-H Amination with an Amidine Moiety. Org. Lett. 2013, 15, 212–215. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Chen, H.; Zhu, X.; Chiba, S. Copper-Catalyzed Aerobic Aliphatic C–H Oxygenation Directed by an Amidine Moiety. J. Am. Chem. Soc. 2012, 134, 11980–11983. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Zhu, X.; Chiba, S. Copper-Catalyzed Aerobic [3+2]-Annulation of N-Alkenyl Amidines. J. Am. Chem. Soc. 2012, 134, 3679–3682. [Google Scholar] [CrossRef] [PubMed]
- Sanjaya, S.; Chiba, S. Copper-catalyzed aminooxygenation of N-allylamidines with PhI(OAc)2. Org. Lett. 2012, 14, 5342–5345. [Google Scholar] [CrossRef] [PubMed]
- Sharama, G.V.R.; Robert, A. Oxidation of aromatic aldehydes with potassium bromate–bromide reagent and an acidic catalyst. Res. Chem. Intermed. 2013, 39, 3251–3254. [Google Scholar] [CrossRef]
- Modak, A.; Deb, A.; Patra, S.; Rana, S.; Maity, S.; Maiti, D. A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst. Chem. Commun. 2012, 48, 4253–4255. [Google Scholar] [CrossRef]
- Debnath, P. TBHP-mediated oxidative synthesis of substituted pyrimido[4,5-d]pyrimidines from N-uracil amidines and methylarenes under metal free conditions. RSC Adv. 2019, 9, 29831–29839. [Google Scholar] [CrossRef]
- Debnath, P.; Sahu, G.; De, U.C. Synthesis of Functionalized Pyrimidouracils by Ruthenium Catalyzed Oxidative Insertion of (Hetero)aryl Methanols into N-Uracil Amidines. Appl. Organomet. Chem. 2021, 35, e6087. [Google Scholar] [CrossRef]
- Wang, M.; Meng, Y.; Wei, W.; Wu, J.; Yu, W.; Changa, J. Iodine/Copper(I)-Catalyzed Direct Annulation of N-Benzimidazolyl Amidines with Aldehydes for the Synthesis of Ortho-Fused 1,3,5-Triazines. Adv. Synth. Catal. 2018, 360, 86–92. [Google Scholar] [CrossRef]
- Tiwari, A.R.; Bhanage, B.M. Oxidative Functionalization of Styrenes: Synthesis of 1,3,5-triazines from Styrenes via Tandem Cyclization with Amidines. ChemistrySelect 2016, 1, 343–346. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, P. Synthesis of Amidines and Its Application to Pyrimidouracil Synthesis. Chem. Proc. 2021, 3, 132. https://doi.org/10.3390/ecsoc-24-08503
Debnath P. Synthesis of Amidines and Its Application to Pyrimidouracil Synthesis. Chemistry Proceedings. 2021; 3(1):132. https://doi.org/10.3390/ecsoc-24-08503
Chicago/Turabian StyleDebnath, Pradip. 2021. "Synthesis of Amidines and Its Application to Pyrimidouracil Synthesis" Chemistry Proceedings 3, no. 1: 132. https://doi.org/10.3390/ecsoc-24-08503
APA StyleDebnath, P. (2021). Synthesis of Amidines and Its Application to Pyrimidouracil Synthesis. Chemistry Proceedings, 3(1), 132. https://doi.org/10.3390/ecsoc-24-08503