One-Pot Selective Functionalization of Polysaccharides with Urea †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Derivatization Procedure of Maltodextrin with Urea
2.3. Test of Urea
2.4. Characterization of the Maltodextrin–Urea Matrix
3. Results and Discussion
3.1. Functionalization of Maltodextrin with Urea
3.2. Characterization of the Materials Synthesized
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandghanooni, S.; Eskandani, M. Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int. J. Biol. Macromol. 2019, 141, 636–662. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Jafari, S.M.; Tong, Q.; Riaz, T.; Assadpour, E.; Aadil, R.M.; Niazi, S.; Khan, I.M.; Shehzad, Q.; Ali, A.; et al. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 2020, 284, 102251. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Xu, W.; Wang, H.X.; Huang, F.; Wang, L.M. Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr. Polym. 2020, 234, 115896. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Willfo, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Helal, H.M.; Samy, W.M.; El-Fakharany, E.M.; Kamoun, E.A.; Mortada, S.M.; Sallam, M.A. Maltodextrin-α-tocopherol conjugates of vitamin E: Influence of degree of derivatization on physicochemical properties and biological evaluation. J. Drug Deliv. Sci. Technol. 2020, 60, 102097. [Google Scholar] [CrossRef]
- Bonda, A.F.; Regis, L.; Giovannelli, L.; Segale, L. Alginate/maltodextrin and alginate/shellac gum core-shell capsules for the encapsulation of peppermint essential oil. Int. J. Biol. Macromol. 2020, 162, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Tang, J.; Xu, M.; Lyu, F.; Zhang, J.; Qiu, Y.; Liu, J.; Ding, Y. Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chem. 2021, 339, 128094. [Google Scholar] [CrossRef] [PubMed]
- Siemons, I.; Politiek, R.G.A.; Boom, R.M.; Van der Sman, R.G.M.; Schutyser, M.A.I. Dextrose equivalence of maltodextrins determines particle morphology development during single sessile droplet drying. Food Res. Int. 2020, 131, 108988. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.M.; Shahgol, M.; Estevinho, B.N.; Rocha, F. Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll. 2020, 108, 106029. [Google Scholar] [CrossRef]
- Aniulyte, J.B.J.; Bryjak, J. Activation of cellulose-ased carriers with pentaethylenedexamine. Proc. Estonian Acad. Sci. Chem. 2006, 55, 61–69. [Google Scholar] [CrossRef]
- United States Pharmacopeial Convention, Inc. The United States Pharmacopeia: USP 31; The National Formulary: NF 26; United States Pharmacopeial Convention: Rockville, MD, USA, 2008. [Google Scholar]
- Šafařík, I.; Šafaříkova, M. Black substrate for spectrophotometric determination of cellulose activity in coloured solutions. J. Biochem. Biophys. Methods 1991, 23, 301–306. [Google Scholar] [CrossRef]
- Silverstein, R.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 5th ed.; Wiley & Sons, Inc.: Chichester, UK, 1991; ISBN 0-471-63404-2. [Google Scholar]
- Qiu, C.; Qin, Y.; Jiang, S.; Liu, C.; Xiong, L.; Sun, Q. Preparation of active polysaccharide-loaded maltodextrin nanoparticles and their stability as a function of ionic strength and pH. LWT Food Sci. Technol. 2017, 76, 164–171. [Google Scholar] [CrossRef]
- Chiang, T.C.; Hamdan, S.; Osman, M.S. Urea Formaldehyde Composites Reinforced with Sago Fibres Analysis by FTIR, TGA, and DSC. Adv. Mater. Sci. Eng. 2016, 2016, 5954636. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guntero, V.A.; Peralta, M.; Noriega, P.; Kneeteman, M.N.; Ferretti, C.A. One-Pot Selective Functionalization of Polysaccharides with Urea. Chem. Proc. 2021, 3, 74. https://doi.org/10.3390/ecsoc-24-08346
Guntero VA, Peralta M, Noriega P, Kneeteman MN, Ferretti CA. One-Pot Selective Functionalization of Polysaccharides with Urea. Chemistry Proceedings. 2021; 3(1):74. https://doi.org/10.3390/ecsoc-24-08346
Chicago/Turabian StyleGuntero, Vanina A., Micaela Peralta, Pablo Noriega, María N. Kneeteman, and Cristián A. Ferretti. 2021. "One-Pot Selective Functionalization of Polysaccharides with Urea" Chemistry Proceedings 3, no. 1: 74. https://doi.org/10.3390/ecsoc-24-08346
APA StyleGuntero, V. A., Peralta, M., Noriega, P., Kneeteman, M. N., & Ferretti, C. A. (2021). One-Pot Selective Functionalization of Polysaccharides with Urea. Chemistry Proceedings, 3(1), 74. https://doi.org/10.3390/ecsoc-24-08346