Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions †
Abstract
:1. Introduction
2. Materials and Methods
Device Fabrication and Photovoltaic Characterization
3. Results and Discussion
3.1. Chemical Characterization
3.2. Optoelectronic Characterization
3.3. Photovoltaic Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Park, S.A.; Ryu, S.U.; Chung, D.; Park, T.; Son, S.Y. Green-Solvent-Processable Organic Semiconductors and Future Directions for Advanced Organic Electronics. J. Mater. Chem. A 2020, 8, 21455–21473. [Google Scholar] [CrossRef]
- Di Mauro, E.; Rho, D.; Santato, C. Biodegradation of Bio-Sourced and Synthetic Organic Electronic Materials towards Green Organic Electronics. Nat. Commun. 2021, 12, 3167. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M.; Głowacki, E.D.; Voss, G.; Bauer, S.; Sariciftci, N.S. Green and Biodegradable Electronics. Mater. Today 2012, 15, 340–346. [Google Scholar] [CrossRef]
- Giraud, L.; Grelier, S.; Grau, E.; Hadziioannou, G.; Brochon, C.; Cramail, H.; Cloutet, E. Upgrading the Chemistry of π-Conjugated Polymers toward More Sustainable Materials. J. Mater. Chem. C 2020, 8, 9792–9810. [Google Scholar] [CrossRef]
- Giovanella, U.; Pasini, M.; Botta, C. Organic Light-Emitting Diodes (OLEDs): Working Principles and Device Technology. In Applied Photochemistry: When Light Meets Molecules; Bergamini, G., Silvi, S., Eds.; Lecture Notes in Chemistry; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–196. ISBN 978-3-319-31671-0. [Google Scholar]
- Botta, C.; Betti, P.; Pasini, M. Organic Nanostructured Host–Guest Materials for Luminescent Solar Concentrators. J. Mater. Chem. A 2012, 1, 510–514. [Google Scholar] [CrossRef]
- Lagonegro, P.; Giovanella, U.; Pasini, M. Carbon Dots as a Sustainable New Platform for Organic Light Emitting Diode. Coatings 2021, 11, 5. [Google Scholar] [CrossRef]
- Prosa, M.; Benvenuti, E.; Pasini, M.; Giovanella, U.; Bolognesi, M.; Meazza, L.; Galeotti, F.; Muccini, M.; Toffanin, S. Organic Light-Emitting Transistors with Simultaneous Enhancement of Optical Power and External Quantum Efficiency via Conjugated Polar Polymer Interlayers. ACS Appl. Mater. Interfaces 2018, 10, 25580–25588. [Google Scholar] [CrossRef] [Green Version]
- Boota, M.; Pasini, M.; Galeotti, F.; Porzio, W.; Zhao, M.-Q.; Halim, J.; Gogotsi, Y. Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chem. Mater. 2017, 29, 2731–2738. [Google Scholar] [CrossRef]
- Porzio, W.; Destri, S.; Giovanella, U.; Pasini, M.; Marin, L.; Iosip, M.D.; Campione, M. Solid State Properties of Oligomers Containing Dithienothiophene or Fluorene Residues Suitable for Field Effect Transistor Devices. Thin Solid Films 2007, 515, 7318–7323. [Google Scholar] [CrossRef]
- Giovanella, U.; Botta, C.; Galeotti, F.; Vercelli, B.; Battiato, S.; Pasini, M. Perfluorinated Polymer with Unexpectedly Efficient Deep Blue Electroluminescence for Full-Colour OLED Displays and Light Therapy Applications. J. Mater. Chem. C 2013, 1, 5322–5329. [Google Scholar] [CrossRef]
- Giovanella, U.; Betti, P.; Bolognesi, A.; Destri, S.; Melucci, M.; Pasini, M.; Porzio, W.; Botta, C. Core-Type Polyfluorene-Based Copolymers for Low-Cost Light-Emitting Technologies. Org. Electron. 2010, 11, 2012–2018. [Google Scholar] [CrossRef]
- Squeo, B.M.; Gasparini, N.; Ameri, T.; Palma-Cando, A.; Allard, S.; Gregoriou, V.G.; Brabec, C.J.; Scherf, U.; Chochos, C.L. Ultra Low Band Gap α,β-Unsubstituted BODIPY-Based Copolymer Synthesized by Palladium Catalyzed Cross-Coupling Polymerization for near Infrared Organic Photovoltaics. J. Mater. Chem. A 2015, 3, 16279–16286. [Google Scholar] [CrossRef] [Green Version]
- Squeo, B.M.; Gregoriou, V.G.; Han, Y.; Palma-Cando, A.; Allard, S.; Serpetzoglou, E.; Konidakis, I.; Stratakis, E.; Avgeropoulos, A.; Anthopoulos, T.D.; et al. α,β-Unsubstituted Meso-Positioning Thienyl BODIPY: A Promising Electron Deficient Building Block for the Development of near Infrared (NIR) p-Type Donor–Acceptor (D–A) Conjugated Polymers. J. Mater. Chem. C 2018, 6, 4030–4040. [Google Scholar] [CrossRef] [Green Version]
- Zampetti, A.; Minotto, A.; Squeo, B.M.; Gregoriou, V.G.; Allard, S.; Scherf, U.; Chochos, C.L.; Cacialli, F. Highly Efficient Solid-State Near-Infrared Organic Light-Emitting Diodes Incorporating A-D-A Dyes Based on α,β -Unsubstituted “BODIPY” Moieties. Sci. Rep. 2017, 7, 1611. [Google Scholar] [CrossRef] [PubMed]
- Schon, T.B.; DiCarmine, P.M.; Seferos, D.S. Polyfullerene Electrodes for High Power Supercapacitors. Adv. Energy Mater. 2014, 4, 1301509. [Google Scholar] [CrossRef]
- DiCarmine, P.M.; Schon, T.B.; McCormick, T.M.; Klein, P.P.; Seferos, D.S. Donor–Acceptor Polymers for Electrochemical Supercapacitors: Synthesis, Testing, and Theory. J. Phys. Chem. C 2014, 118, 8295–8307. [Google Scholar] [CrossRef]
- Estrada, L.A.; Liu, D.Y.; Salazar, D.H.; Dyer, A.L.; Reynolds, J.R. Poly[Bis-EDOT-Isoindigo]: An Electroactive Polymer Applied to Electrochemical Supercapacitors. Macromolecules 2012, 45, 8211–8220. [Google Scholar] [CrossRef]
- Wang, K.; Huang, L.; Eedugurala, N.; Zhang, S.; Sabuj, M.A.; Rai, N.; Gu, X.; Azoulay, J.D.; Ng, T.N. Wide Potential Window Supercapacitors Using Open-Shell Donor–Acceptor Conjugated Polymers with Stable N-Doped States. Adv. Energy Mater. 2019, 9, 1902806. [Google Scholar] [CrossRef] [Green Version]
- McAllister, B.T.; Schon, T.B.; DiCarmine, P.M.; Seferos, D.S. A Study of Fused-Ring Thieno[3,4-e]Pyrazine Polymers as n-Type Materials for Organic Supercapacitors. Polym. Chem. 2017, 8, 5194–5202. [Google Scholar] [CrossRef]
- van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W. Developments in the Chemistry and Band Gap Engineering of Donor–Acceptor Substituted Conjugated Polymers. Mater. Sci. Eng. R Rep. 2001, 32, 1–40. [Google Scholar] [CrossRef]
- Aicha Youssef, A.; Mohamed Bouzzine, S.; Mohyi Eddine Fahim, Z.; Sıdır, İ.; Hamidi, M.; Bouachrine, M. Designing Donor-Acceptor Thienopyrazine Derivatives for More Efficient Organic Photovoltaic Solar Cell: A DFT Study. Phys. B Condens. Matter 2019, 560, 111–125. [Google Scholar] [CrossRef]
- Porzio, W.; Destri, S.; Pasini, M.; Giovanella, U.; Ragazzi, M.; Scavia, G.; Kotowski, D.; Zotti, G.; Vercelli, B. Synthesis and Characterisation of Fluorenone–Thiophene-Based Donor–Acceptor Oligomers: Role of Moiety Sequence upon Packing and Electronic Properties. New J. Chem. 2010, 34, 1961–1973. [Google Scholar] [CrossRef]
- Chochos, C.L.; Drakopoulou, S.; Katsouras, A.; Squeo, B.M.; Sprau, C.; Colsmann, A.; Gregoriou, V.G.; Cando, A.-P.; Allard, S.; Scherf, U.; et al. Beyond Donor–Acceptor (D–A) Approach: Structure–Optoelectronic Properties—Organic Photovoltaic Performance Correlation in New D–A1–D–A2 Low-Bandgap Conjugated Polymers. Macromol. Rapid Commun. 2017, 38, 1600720. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, G.; Pratyusha, T.; Shen, W.; Gupta, D. Performance of Donor-Acceptor Copolymer Materials PCPDTBT and PCDTBT with Poly Hexyl Thiophene Polymer in a Ternary Blend. Mater. Today Proc. 2017, 4, 5060–5066. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; You, W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules 2012, 45, 607–632. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Yang, L.; Price, S.C.; Knight, K.J.; You, W. Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels. Angew. Chem. Int. Ed. 2010, 49, 7992–7995. [Google Scholar] [CrossRef]
- Shi, Z.; Ka, I.W.H.; Wang, X.; Vijila, C.; Wang, F.; Li, G.; Tjiu, W.W.; Li, J.; Xu, J. Low Band-Gap Weak Donor–Strong Acceptor Conjugated Polymer for Organic Solar Cell. RSC Adv. 2015, 5, 98876–98879. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; Stoneking, S.; You, W. A Weak Donor−Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Appl. Mater. Interfaces 2010, 2, 1377–1383. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.N.; Hwang, M.-C.; Kim, Y.-H.; Park, C.E. A Weak Donor/Strong Acceptor Alternating Copolymer for Efficient Bulk Heterojunction Solar Cells. Synth. Met. 2014, 198, 93–100. [Google Scholar] [CrossRef]
- Ji, X.; Fang, L. Quinoidal Conjugated Polymers with Open-Shell Character. Polym. Chem. 2021, 12, 1347–1361. [Google Scholar] [CrossRef]
- Huang, Y.; Egap, E. Open-Shell Organic Semiconductors: An Emerging Class of Materials with Novel Properties. Polym. J. 2018, 50, 603–614. [Google Scholar] [CrossRef]
- Becerril, H.A.; Miyaki, N.; Tang, M.L.; Mondal, R.; Sun, Y.-S.; Mayer, A.C.; Parmer, J.E.; McGehee, M.D.; Bao, Z. Transistor and Solar Cell Performance of Donor–Acceptor Low Bandgap Copolymers Bearing an Acenaphtho[1,2-b]Thieno[3,4-e]Pyrazine (ACTP) Motif. J. Mater. Chem. 2009, 19, 591–593. [Google Scholar] [CrossRef]
- Scharber, M.C.; Sariciftci, N.S. Low Band Gap Conjugated Semiconducting Polymers. Adv. Mater. Technol. 2021, 6, 2000857. [Google Scholar] [CrossRef]
- Brabec, C.J.; Winder, C.; Sariciftci, N.S.; Hummelen, J.C.; Dhanabalan, A.; van Hal, P.A.; Janssen, R.A.J. A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes. Adv. Funct. Mater. 2002, 12, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Nie, Q.; Tang, A.; Guo, Q.; Zhou, E. Benzothiadiazole-Based Non-Fullerene Acceptors. Nano Energy 2021, 87, 106174. [Google Scholar] [CrossRef]
- He, K.; Kumar, P.; Yuan, Y.; Li, Y. Wide Bandgap Polymer Donors for High Efficiency Non-Fullerene Acceptor Based Organic Solar Cells. Mater. Adv. 2021, 2, 115–145. [Google Scholar] [CrossRef]
- Mondal, R.; Ko, S.; Bao, Z. Fused Aromatic Thienopyrazines: Structure, Properties and Function. J. Mater. Chem. 2010, 20, 10568–10576. [Google Scholar] [CrossRef]
- Rasmussen, S.C.; Schwiderski, R.L.; Mulholland, M.E. Thieno[3,4-b]Pyrazines and Their Applications to Low Band Gap Organic Materials. Chem. Commun. 2011, 47, 11394–11410. [Google Scholar] [CrossRef]
- Genene, Z.; Wang, J.; Xu, X.; Yang, R.; Mammo, W.; Wang, E. A Comparative Study of the Photovoltaic Performances of Terpolymers and Ternary Systems. RSC Adv. 2017, 7, 17959–17967. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, C.; Tanaka, S.; Yamashita, Y. Synthesis of New Narrow Bandgap Polymers Based on 5,7-Di(2-Thienyl)Thieno[3,4-b]Pyrazine and Its Derivatives. J. Chem. Soc. Chem. Commun. 1994, 13, 1585–1586. [Google Scholar] [CrossRef]
- Palamà, I.; Di Maria, F.; Viola, I.; Fabiano, E.; Gigli, G.; Bettini, C.; Barbarella, G. Live-Cell-Permeant Thiophene Fluorophores and Cell-Mediated Formation of Fluorescent Fibrils. J. Am. Chem. Soc. 2011, 133, 17777–17785. [Google Scholar] [CrossRef] [PubMed]
- Iosip, M.D.; Destri, S.; Pasini, M.; Porzio, W.; Pernstich, K.P.; Batlogg, B. New Dithieno[3,2-b:2′,3′-d]Thiophene Oligomers as Promising Materials for Organic Field-Effect Transistor Applications. Synth. Met. 2004, 146, 251–257. [Google Scholar] [CrossRef]
- Xu, B.; Pelse, I.; Agarkar, S.; Ito, S.; Zhang, J.; Yi, X.; Chujo, Y.; Marder, S.; So, F.; Reynolds, J.R. Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. ACS Appl. Mater. Interfaces 2018, 10, 44583–44588. [Google Scholar] [CrossRef] [PubMed]
- Schmatz, B.; Pelse, I.; Advincula, A.; Zhang, J.; Marder, S.R.; Reynolds, J.R. Photovoltaic Donor-Acceptor Conjugated Polymers with Minimally Substituted Acceptor Moieties. Org. Electron. 2019, 68, 280–284. [Google Scholar] [CrossRef]
- Abdo, N.I.; El-Shehawy, A.A.; El-Barbary, A.A.; Lee, J.-S. Palladium-Catalyzed Direct C–H Arylation of Thieno[3,4-b]Pyrazines: Synthesis of Advanced Oligomeric and Polymeric Materials. Eur. J. Org. Chem. 2012, 2012, 5540–5551. [Google Scholar] [CrossRef]
- Blouin, N.; Michaud, A.; Wakim, S.; Boudreault, P.-L.T.; Leclerc, M.; Vercelli, B.; Zecchin, S.; Zotti, G. Optical, Electrochemical, Magnetic, and Conductive Properties of New Polyindolocarbazoles and Polydiindolocarbazoles. Macromol. Chem. Phys. 2006, 207, 166–174. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Goti, G.; Calamante, M.; Coppola, C.; Dessì, A.; Franchi, D.; Mordini, A.; Sinicropi, A.; Zani, L.; Reginato, G. Donor-Acceptor-Donor Thienopyrazine-Based Dyes as NIR-Emitting AIEgens. Eur. J. Org. Chem. 2021, 2021, 2655–2664. [Google Scholar] [CrossRef]
- Beaupré, S.; Leclerc, M. PCDTBT: En Route for Low Cost Plastic Solar Cells. J. Mater. Chem. A 2013, 1, 11097–11105. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%. Nat. Photon 2009, 3, 297–302. [Google Scholar] [CrossRef]
Polymer | Solution [nm] a | Film [nm] b | Egopt [eV] c | Eox [eV] | Ered [eV] | HOMO [eV] d | LUMO [eV] | Egcv [eV] e | |
---|---|---|---|---|---|---|---|---|---|
λmax | λmax | λonset | |||||||
PCDTBT | 560 | 581 | 656 | 1.89 | 0.53 | −1.70 | −5.27 | −3.03 | 2.24 |
PCDTTP | 635 | 655 | 775 | 1.61 | 0.35 | −1.56 | −5.08 | −3.17 | 1.91 |
PC(DTTP)0.5(DTBT)0.5 | 518; 611 | 550; 640 | 766 | 1.60 | 0.20 | −1.51 | −4.93 | −3.23 | 1.7 |
Thickness | Voc [V] | FF [-] | Jsc [mAcm−2] | η [-] | JscEQE [mAcm−2] a |
---|---|---|---|---|---|
70 | 1.89 | 0.53 | −5.27 | −3.03 | 2.24 |
75 | 1.61 | 0.35 | −5.08 | −3.17 | 1.91 |
95 | 1.60 | 0.20 | −4.93 | −3.23 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squeo, B.M.; Lassi, E.; Botta, C.; Luzzati, S.; Vercelli, B.; Zappia, S.; Pasini, M. Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions. Chem. Proc. 2022, 8, 71. https://doi.org/10.3390/ecsoc-25-11742
Squeo BM, Lassi E, Botta C, Luzzati S, Vercelli B, Zappia S, Pasini M. Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions. Chemistry Proceedings. 2022; 8(1):71. https://doi.org/10.3390/ecsoc-25-11742
Chicago/Turabian StyleSqueo, Benedetta Maria, Elisa Lassi, Chiara Botta, Silvia Luzzati, Barbara Vercelli, Stefania Zappia, and Mariacecilia Pasini. 2022. "Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions" Chemistry Proceedings 8, no. 1: 71. https://doi.org/10.3390/ecsoc-25-11742
APA StyleSqueo, B. M., Lassi, E., Botta, C., Luzzati, S., Vercelli, B., Zappia, S., & Pasini, M. (2022). Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions. Chemistry Proceedings, 8(1), 71. https://doi.org/10.3390/ecsoc-25-11742