Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Equilibria in the Ag2Se–PbSe–SnSe2 System
3.2. Crystal Structure of the Quaternary Compound Ag2ZnSnSe4
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parasyuk, O.V.; Piskach, L.V.; Romanyuk, Y.E.; Olekseyuk, I.D.; Zaremba, V.I.; Pekhnyo, V.I. Phase relations in the quasi-binary Cu2GeS3–ZnS and quasi-ternary Cu2S–Zn(Cd)S–GeS2 systems and crystal structure of Cu2ZnGeS4. J. Alloys Compd. 2005, 397, 85–94. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Y.E.; Olekseyuk, I.D. The Ag2Se–HgSe–SiSe2 system in the 0-60 mol. % SiSe2 region. J. Alloys Compd. 2003, 348, 157–166. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Y.E.; Olekseyuk, I.D.; Piskach, L.V. The Ag2Se–HgSe–GeSe2 system and crystal structures of the compounds. J. Alloys Compd. 2003, 351, 135–144. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Gulay, L.D.; Piskach, L.V.; Olekseyuk, I.D. The Ag2Se–CdSe–SnSe2 system at 670 K and the crystal structure of the Ag2CdSnSe4 compd. J. Alloys Compd. 2002, 335, 176–180. [Google Scholar] [CrossRef]
- Piskach, L.V.; Parasyuk, O.V.; Olekseyuk, I.D.; Romanyuk, Y.E.; Volkov, S.V.; Pekhnyo, V.I. Interaction of argyrodite family compounds with the chalcogenides of II-b elements. J. Alloys Compd. 2006, 421, 98–104. [Google Scholar] [CrossRef]
- Parasyuk, O.V. Phase relations of the Ag2SnS3–HgS and Ag33.3Sn16.7Se(Te)50–HgSe(Te) section in Ag–Hg–Sn–S(Se,Te) systems. J. Alloys Compd. 1999, 291, 215–219. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Gulay, L.D. Crystal structure of the Ag2.66Hg2Sn1.34Se6 and Hg2SnSe4 compounds. J. Alloys Compd. 2002, 337, 94–98. [Google Scholar]
- Parasyuk, O.V.; Gulay, L.D.; Piskach, L.V.; Kumanska, Y.O. The Ag2Se—HgSe—SnSe2 System and the Crystal Structure of the Ag2HgSnSe4 Compound. J. Alloys Compd. 2002, 339, 140–143. [Google Scholar] [CrossRef]
- Dal Corso, S.; Liautard, B.; Tedenac, J.C. The Pb–Sn–Se System: Phase Equilibria and Reactions in the PbSe–SnSe–Se SubTernary. J. Phase Equilibria. 1995, 16, 308–314. [Google Scholar] [CrossRef]
- Fedorchuk, A.O.; Parasyuk, O.V.; Kityk, I.V. Second anion coordination for wurtzite and sphalerite chalcogenide derivatives as a tool for the description of anion sub-lattice. Mater. Chem. Phys. 2013, 139, 92–99. [Google Scholar] [CrossRef]
- Wagner, G.; Lehmann, S.; Schorr, S.; Spemann, D.; Doering, T. The two-phase region in 2(ZnSe)x(CuInSe2)1−x alloys and structural relation between the tetragonal and cubic phases. J. Solid State Chem. 2005, 178, 3631–3638. [Google Scholar] [CrossRef]
- Wold, A.; Brec, R. Structure NaCl des phases AgxSn1−xX (X = S, Se). Mater. Res. Bull. 1976, 11, 761–765. [Google Scholar] [CrossRef]
- Liu, H.; Chang, L.L.Y. Phase relations in systems of tin chalcogenides. J. Alloys Compd. 1992, 185, 183–190. [Google Scholar] [CrossRef]
- Billetter, H.; Ruschewitz, U. Structural phase transitions in Ag2Se (naumannite). Z. Anorg. Allg. Chem. 2008, 634, 241–246. [Google Scholar] [CrossRef]
Compound | Ag2ZnSnSe4 |
Number of formula units per unit cell | 2 |
Space group | 2m |
Pearson symbol | tI16 |
a (nm) | 0.60434(2) |
c (nm) | 1.13252(5) |
c/a | 1.874 |
Cell volume (nm3) | 0.41363(5) |
Number of atoms in the cell | 16.0 |
Calculated density (g/cm3) | 5.7454(6) |
Absorption coefficient (1/cm) | 884.93 |
Radiation and wavelength | CuKα 0.154178 nm |
Diffractometer | Powder DRON 4–13 |
Mode of refinement | Full profile |
Number of atomic sites | 4 |
Number of free parameters | 7 |
2Θ and sinΘ/λ (max) | 99.80 and 0.496 |
RI and RP | 0.0570 and 0.1277 |
Atom | Wyckoff Site | x/a | y/b | z/c | Biso × 102, nm2 |
---|---|---|---|---|---|
Ag | 4(d) | 0 | 1/2 | 1/4 | 1.21(9) |
Zn | 2(a) | 0 | 0 | 0 | 3.5(3) |
Sn | 2(b) | 0 | 0 | 1/2 | 0.31(9) |
Se | 8(i) | 0.2432(4) | x | 0.1129(3) | 1.51(8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piskach, L.; Velychko, O.; Fedorchuk, A.; Kogut, Y.; Olekseyuk, I.; Parasyuk, O. Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems. Chem. Proc. 2022, 9, 4. https://doi.org/10.3390/IOCC_2022-12155
Piskach L, Velychko O, Fedorchuk A, Kogut Y, Olekseyuk I, Parasyuk O. Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems. Chemistry Proceedings. 2022; 9(1):4. https://doi.org/10.3390/IOCC_2022-12155
Chicago/Turabian StylePiskach, Lyudmyla, Olga Velychko, Anatolii Fedorchuk, Yuri Kogut, Ivan Olekseyuk, and Oleg Parasyuk. 2022. "Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems" Chemistry Proceedings 9, no. 1: 4. https://doi.org/10.3390/IOCC_2022-12155
APA StylePiskach, L., Velychko, O., Fedorchuk, A., Kogut, Y., Olekseyuk, I., & Parasyuk, O. (2022). Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems. Chemistry Proceedings, 9(1), 4. https://doi.org/10.3390/IOCC_2022-12155