Smartphone-Based Optical Fiber Sensor for the Assessment of a Fed-Batch Bioreactor †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Monitoring and Modelling
2.2. Sensing with the Smartphone
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, M.; Sikorski, J.; Kastner, C.A.; Akroyd, J.; Mosbach, S.; Lau, R.; Kraft, M. Applying Industry 4.0 to the Jurong Island Eco-industrial Park. Energy Procedia 2015, 75, 1536–1541. [Google Scholar] [CrossRef]
- Reis, M.S.; Kenett, R. Assessing the value of information of data-centric activities in the chemical processing industry 4.0. AIChE J. 2018, 64, 3868–3881. [Google Scholar] [CrossRef]
- Ju, H.; Kandimalla, V.K. Electrochemical Sensors, Biosensors and Their Biomedical Applications; Zhang, X., Ju, H., Wang, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Soares, M.C.P.; Vit, F.F.; Suzuki, C.K.; de la Torre, L.G.; Fujiwara, E. Perfusion Microfermentor Integrated into a Fiber Optic Quasi-Elastic Light Scattering Sensor for Fast Screening of Microbial Growth Parameters. Sensors 2019, 19, 2493. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nguyen, L.V.; Zhao, Y.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sensors Actuators, B Chem. 2018, 269, 103–109. [Google Scholar] [CrossRef]
- Gong, C.; Gong, Y.; Chen, Q.; Rao, Y.J.; Peng, G.D.; Fan, X. Reproducible fiber optofluidic laser for disposable and array applications. Lab Chip 2017, 17, 3431–3436. [Google Scholar] [CrossRef] [PubMed]
- Basso, L.C.; Basso, T.O.; Rocha, S.N. Biofuel Production. Recent Developments and Prospect; Bernardes, M.A.S., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory Air Pollution Monitoring Using Smartphones. In Proceedings of the 2nd International Workshop on Mobile Sensing (Mobile Sensing: From Smartphones and Wearables to Big Data). Workshop co-located with IPSN ’12 and CPSWEEK, Beijing, China, 16 April 2012; Academic Press: Beijing, China, 2012. [Google Scholar]
- Guo, J. Uric Acid Monitoring with a Smartphone as the Electrochemical Analyzer. Anal. Chem. 2016, 88, 11986–11989. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sarma, D.; Nath, P. Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Adv. 2015, 5, 057151. [Google Scholar] [CrossRef]
- Gunda, N.S.K.; Naicker, S.; Shinde, S.; Kimbahune, S.; Shrivastava, S.; Mitra, S. Mobile Water Kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli. Anal. Methods 2014, 6, 6236–6246. [Google Scholar] [CrossRef]
- Michelini, E.; Calabretta, M.M.; Cevenini, L.; Lopreside, A.; Southworth, T.; Fontaine, D.M.; Simoni, P.; Branchini, B.R.; Roda, A. Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosens. Bioelectron. 2019, 123, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Ollis, D. Biochemical Engineering Fundamentals; McGraw-Hill: New York City, NY, USA, 1986. [Google Scholar]
- Doran, P. Bioprocess Engineering Principles, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Soares, M.C.P.; Luz, G.F.; Costa, A.C.; Gomes, M.K.; Mendes, B.F.; Torre, L.G.; Fujiwara, E. Saccharomyces cerevisiae Fed-Batch Fermentation and Artificial Intelligence Method for Adjusting Model Parameters to Experimental Data. Blucher Chem. Eng. Proc. 2018, 1, 2010–2014. [Google Scholar] [CrossRef]
- Concentrative Properties of Aqueous Solutions: Density, Refractive Index, Freezing Point Depression, and Viscosity. In CRC Handbook of Chemistry and Physics, 100th ed.; Rumble, J. (Ed.) CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, M.C.P.; Cabral, T.D.; Lazari, P.M.; Rodrigues, M.d.S.; Rodrigues, G.S.; Fujiwara, E. Smartphone-Based Optical Fiber Sensor for the Assessment of a Fed-Batch Bioreactor. Eng. Proc. 2020, 2, 26. https://doi.org/10.3390/ecsa-7-08157
Soares MCP, Cabral TD, Lazari PM, Rodrigues MdS, Rodrigues GS, Fujiwara E. Smartphone-Based Optical Fiber Sensor for the Assessment of a Fed-Batch Bioreactor. Engineering Proceedings. 2020; 2(1):26. https://doi.org/10.3390/ecsa-7-08157
Chicago/Turabian StyleSoares, Marco César Prado, Thiago Destri Cabral, Pedro Machado Lazari, Matheus dos Santos Rodrigues, Gildo Santos Rodrigues, and Eric Fujiwara. 2020. "Smartphone-Based Optical Fiber Sensor for the Assessment of a Fed-Batch Bioreactor" Engineering Proceedings 2, no. 1: 26. https://doi.org/10.3390/ecsa-7-08157
APA StyleSoares, M. C. P., Cabral, T. D., Lazari, P. M., Rodrigues, M. d. S., Rodrigues, G. S., & Fujiwara, E. (2020). Smartphone-Based Optical Fiber Sensor for the Assessment of a Fed-Batch Bioreactor. Engineering Proceedings, 2(1), 26. https://doi.org/10.3390/ecsa-7-08157